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Abstract
Objective. Advancements in electrode design have resulted in micro-electrode arrays with hundreds
of channels for single cell recordings. In the resulting electrophysiological recordings, each
implanted electrode can record spike activity (SA) of one or more neurons along with background
activity (BA). The aim of this study is to isolate SA of each neural source. This process is called
spike sorting or spike classification. Advanced spike sorting algorithms are time consuming because
of the human intervention at various stages of the pipeline. Current approaches lack generalization
because the values of hyperparameters are not fixed, even for multiple recording sessions of the
same subject. In this study, a fully automatic spike sorting algorithm called ‘SpikeDeep-Classifier’ is
proposed. The values of hyperparameters remain fixed for all the evaluation data. Approach. The
proposed approach is based on our previous study (SpikeDeeptector) and a novel background
activity rejector (BAR), which are both supervised learning algorithms and an unsupervised
learning algorithm (K-means). SpikeDeeptector and BAR are used to extract meaningful channels
and remove BA from the extracted meaningful channels, respectively. The process of clustering
becomes straight-forward once the BA is completely removed from the data. Then, K-means with a
predefined maximum number of clusters is applied on the remaining data originating from neural
sources only. Lastly, a similarity-based criterion and a threshold are used to keep distinct clusters
and merge similar looking clusters. The proposed approach is called cluster accept or merge
(CAOM) and it has only two hyperparameters (maximum number of clusters and similarity
threshold) which are kept fixed for all the evaluation data after tuning.Main results.We compared
the results of our algorithm with ground-truth labels. The algorithm is evaluated on data of human
patients and publicly available labeled non-human primates (NHPs) datasets. The average accuracy
of BAR on datasets of human patients is 92.3% which is further reduced to 88.03% after
(K-means+ CAOM). In addition, the average accuracy of BAR on a publicly available labeled
dataset of NHPs is 95.40% which reduces to 86.95% after (K-mean+ CAOM). Lastly, we
compared the performance of the SpikeDeep-Classifier with two human experts, where
SpikeDeep-Classifier has produced comparable results. Significance. The SpikeDeep-Classifier is
evaluated on the datasets of multiple recording sessions of different species, different brain areas
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and different electrode types without further retraining. The results demonstrate that
‘SpikeDeep-Classifier’ possesses the ability to generalize well on a versatile dataset and henceforth
provides a generalized and fully automated solution to offline spike sorting.

Clinical trial registration number The clinical trial registration number for patients implanted
with the Utah array is NCT 01849822. For the epilepsy patients, approval from the local ethics
committee at the Ruhr-University Bochum, Germany, was obtained prior to implantation. The
Clinical trial registration number for the epilepsy patients implanted with microwires is 16–5670.

1. Introduction

Understanding complex behaviors and network
properties of the brain requires access to the activity
of a large population of neurons. One way to access
the activity of single neurons in the intact brain is
the implantation of small but dense micro-electrode
arrays. A state-of-the art single micro-electrode array
can contain hundreds of channels which enable us
to record single unit activity (SUA) of hundreds
of neurons (Frey et al 2009, Lambacher et al 2011,
Spira and Hai 2013, Berényi et al 2013, Harris et al
2016). Nowadays, it is a common practice to implant
multiple micro-electrode arrays and record SA from
more than one site, simultaneously (Aflalo et al 2015,
Klaes et al 2015, Ajiboye et al 2017, Choi et al 2018).
However, recorded data is usually contaminated with
BA, and in addition to that it is also possible that a
single channel records the activities of more than one
neuron. Hence, the biggest constraint for any further
analysis is to extract and isolate the activity of each
single neuron in the presence of background noise.
This process is called spike sorting.

The process of spike sorting is usually either
manual or semi-automatic (Abeles and Goldstein
1977, Lewicki 1998, Gibson et al 2012). The pro-
cess of manual or semi-automatic spike sorting
involves human curation at various stages of a spike
sorting pipeline. As a result, this process becomes
labor-intensive and highly time-consuming. There-
fore, these techniques could never compete with an
increasing amount of data resulting fromhighly dense
micro-electrode arrays and long duration recording
sessions. Another major drawback is human sub-
jectivity, which can lead to inconsistent results when
the same data is analyzed by a different person (Wood
et al 2004). A further limitation of manual or semi-
automatic spike sorting is that the quality completely
depends on the skills of the human curator. There-
fore, fully automatic spike sorting has always been a
major area of interest (Spacek et al 2009, Takekawa
et al 2012, Bongard et al 2014, Carlson et al 2014,
Pachitariu et al 2016, Chung et al 2017, Yger et al
2018).

A spike sorting pipeline involves at first, the
pre-processing of the raw time series by applying
band-pass filtering and then using a threshold to
extract qualified events. It is possible that some of the
extracted qualified events represent backgroundnoise

and others SUA of surrounding neurons. Finally, to
assign labels to each of the extracted qualified events,
clustering is used (Lewicki 1998; Einevoll GT, 2012,
Marre et al 2012). Mostly, at least one of these pro-
cesses is performed manually. However, there exist
few methods that offer an automatic solution to the
spike sorting problem. A robust and automatic solu-
tion is presented in (Oliynyk et al 2012). The presen-
ted solution is based on singular value decompos-
ition (SVD) and Fuzzy C-mean (FCM) classifica-
tion. Alternatively, an automatic solution for spike
detection and sorting is presented in (Shalchyan et al
2012). This study employs an unsupervised learn-
ing method, which finds the occurrence of spike
events with wavelet shrinkage denoising in combin-
ation with multiscale edge detection using wavelet-
based manifestation variable. Here, a correlation-
based similarity criterion was defined to update the
wavelet selection during clustering. Another solution
is presented in (Tiganj and Mboup 2012). In this
study, spike classification is performed using an iter-
ative independent component analysis (ICA) and a
deflation-based method in two nested loops. Spik-
ing activity of each neuron is first singled out and
then deflated from the recording sessions. In another
study (Pillow et al 2013) a model-based spike sort-
ing algorithm is proposed, which explicitly accounts
for the superposition of spike waveforms. In (Nguyen
et al 2015), diffusion maps (DM) are used for fea-
ture extraction and K-means clustering in combin-
ation with silhouette statistics, which automatically
determine the number of neural units and their activ-
ities on a channel. Similarly, in (Quiroga et al 2004)
wavelet transformation (WT) are used for feature
extraction and superparamagnetic clustering offers
an automatic spike sorting solution. Recently, a solu-
tion based on density-based clustering algorithm
called ISO-SPLIT is proposed in (Chung et al 2017).

For multiple channels recordings it has been
reported that a considerable fraction of channels of
implanted arrays record only BA (Lewicki 1998; Hill
et al 2011; Klaes et al 2015, Rey et al 2015). Other
channels which record SA also record a substan-
tial amount of BA. This BA is a combination of
technical artifacts and neural activity far away from
the tip of the recording electrodes. The positions of
recording electrodes can also be slightly perturbed by
movements. Therefore, the resulting signal is of non-
stationary nature (time variant). The dynamics of the
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recorded signal can change from session to session.
Therefore, it is a challenge to model all the resultant
dynamics.

Recently, it has been reported in (Chung et al
2017) that the unavailability of a general solution
to spike sorting is mainly because of non-stationary
behavior of the background activity (BA). In this
study, we show that spike sorting becomes an ordin-
ary clustering problem upon the complete removal of
BA from the source signal. We proposed a general-
ized solution for this problem, based on our previous
study (Saif-ur-rehman et al 2019) in conjunctionwith
a novel algorithm called background activity rejector
(BAR). By generalized solution, we mean that the
algorithm is trained once on a versatile dataset. Later,
it can be applied to a dataset recorded from a different
brain area, different species, different electrode type
and recording hardware without any re-training. We
show that it is possible to completely remove back-
ground noise with a huge amount of labeled train-
ing data and by stacking two different deep-learning
methods.

Deep-learning methods, especially supervised
learning algorithms in combinationwith a huge num-
ber of labeled training examples, have proven worth-
while in the field of computer vision (Krizhevsky
et al 2012; Girshick et al 2014, Girshick 2015, Ren
et al 2017). Recently, convolutional neural networks
(CNNs) alone have become the major source of suc-
cess in many computer vision applications (Girshick
et al 2014, Girshick 2015, Guo et al 2017, Ren et al
2017). CNNs, because of their shared-weights archi-
tecture and translation in-variance characteristics
can learn temporal and spatial patterns (Lecun et al
1998). However, one of the primary reasons behind
the success story of CNNs is the availability of huge
publicly available datasets (Jia et al 2009, Stallkamp
et al 2011). Recently, deep-learning algorithms have
gained attention in neuroscience community. In our
previous study (Saif-ur-rehman et al 2019), we pro-
posed a deep-learning basedmethod to extractmean-
ingful channels from large implanted microelectrode
arrays. Based on our study (Saif-ur-rehman et al
2019), a deep-learning based algorithm is used to
extract feature vectors for online invasive brain com-
puter interface (BCI) applications in another study
(Issar et al 2020). In (Rácz et al 2020) a deep-learning
method is proposed for spike detection and sorting.
We strongly believe that results of many neuroscience
problems including spike sorting and online BCI
decoding can be improved in the presence of large
labeled datasets. Therefore, in this study, we collec-
ted and labeled a large dataset. Our dataset includes
the data from our own lab and from different collab-
orators. Later, we also used some publicly available
labeled datasets to validate our results (Shi et al 2013,
Buneo et al 2016, Lawlor et al 2018).

In this study, we aimed to provide a univer-
sal solution to the offline spike sorting problem by

using large labeled dataset in conjunction with state-
of-the-art deep learning algorithms. Our algorithm
‘SpikeDeep-Classifier’ is based on a novel pipeline,
which is a set of supervised and unsupervised learn-
ing methods. First, a supervised learning method is
used to select the meaningful channels as proposed in
study (Saif-ur-rehman et al 2019). Then, we employ
another supervised learning method to remove the
remaining BA from the selected channels. After the
complete removal of BA, we employ k-means cluster-
ing (Lloyd 1957, Macqueen 1967) with a predefined
number of maximum clusters on the feature vec-
tors extracted using principal component analysis
(PCA) (Jolliffe andCadima 2016). Lastly, a similarity-
based algorithm is used to automatically accept dis-
tant clusters and merge similar clusters.

2. Materials &method

2.1. Approvals
We used a dataset collected from two tetraplegic
patients implanted with two Utah arrays each and
epilepsy patients implanted with depth-electrodes in
preparation for surgery. Utah array patients were
implanted in posterior parietal cortex (PPC). These
Patients were recruited for two different BCI stud-
ies (Aflalo et al 2015, Klaes et al 2015). These stud-
ies took place after the institutional approvals held by
the California Institute of Technology, and University
of Southern California. Detailed approval inform-
ation is available in (Aflalo et al 2015, Klaes et al
2015). Epilepsy patients were implanted with depth-
electrodes/micro-wires in hippocampus in the form
of bundles. These patients were implanted for med-
ical reasons and have participated voluntarily. We
obtained the approval for epilepsy patients from the
Ruhr-University ethics committee. In addition, we
also used publicly available datasets. Approval of each
dataset is available in (Shi et al 2013, Lawlor et al
2018).

2.2. Demographic and implantation details
In this study, we used the data recorded from
four human patients and four NHPs (male rhesus
macaques). Human patients were implanted either
with Utah arrays or withmicro-wires using a Behnke-
Fried configuration (Fried et al 1999). Two of the
human patients were implanted with micro-wires,
which were coupled in a group of eight indi-
vidual platinum coated electrodes. The remaining
two human patients were implanted with two Utah
arrays. Each array contains 100 electrodes arranged
in a grid of dimension 10 × 10. Further information
about surgery and array placement is mentioned in
(Aflalo et al 2015, Klaes et al 2015).

The NHP data was acquired from two differ-
ent publicly available datasets provided by Col-
laborative Research in Computational Neuroscience
(CRCNS) (Buneo et al 2016, Perich et al 2018).
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Table 1. Subjects demographic and implantation details.

Specie Subject ID Sex Age(year) Place of implantation Number of recordings
Number of implanted
electrodes

Humans U1 Male 32 Posterior parietal cortex 7 192 (2-Utah array)
Humans U2 Male 63 Posterior parietal cortex 7 192 (2-Utah array)
Humans M1 Female 49 Anterior hippocampus 1 16 (Micro-wires)
Humans M2 Female 26 Anterior hippocampus 1 16 (Micro-wires)
NHPs MM Male — Primary motor cortex

and premotor cortex
1 192 (2-Utah array)

NHPs MT Male — Primary motor cortex 1 192 (2-Utah array)
NHPs X/B Male — Superior parietal lobule 10 Single micro-electrodes

The dataset reported in (Perich et al 2018) recor-
ded from twomacaques using implanted Utah arrays.
The second NHP dataset (Shi et al 2013) recorded
from two rhesus macaques (X and B) using single
micro-electrodes. However, this dataset was merged
into one.

Further demographic and implantation details
are mentioned in table 1.

2.3. Data collection & preprocessing
Human data was recorded using a neural signal
processor (NSP) (Blackrock microsystems, Salt Lake
City, UT, USA). Here, we aim for end-to-end learning
(Lecun et al 1998, Glasmachers 2017), first for mean-
ingful (neural) channel selection and then to dis-
card BA. Preprocessing involves extraction of events
from the raw data based on a thresholding proced-
ure (Lewicki 1998) which is performed by the NSP
hardware. Here, we used standard settings. Events are
extracted using an automatic amplitude thresholding
method that is applied to the high-pass filtered sig-
nal with a cut-off frequency of 250 Hz. Amplitudes
that cross the threshold, which is set to be−4.5 times
the root-mean-square of the signal, are considered
an event. We used the given settings because same
setting was used previously for online BCI decoding
(Klaes et al 2015) to extract the events correspond-
ing to spike. For each event a waveform consisting of
48 samples, consisting of the event itself, 15 samples
before the event and 32 samples after the event, is
extracted and passed on for further analysis.

The first NHPs dataset (Perich et al 2018)
was recorded using the Blackrock NSP (Blackrock
microsystems Salt Lake City, UT, USA). The data-
set contains 48 sampled preprocessed labeled events.
Further details are available in (Perich et al 2018). The
secondNHPs dataset (Buneo et al 2016) was recorded
with a Plexon NSP (Plexon Inc. Dallas, TX, United
States). The dataset contains 32 sampled events,
which were then resampled to 48 using MATLAB’s
resample function. The resample function performs
rate conversion uniformly from one sample rate to
another sample rate. This function has three input
parameters: original event, desired frequency, ori-
ginal frequency. Original event represents 32 sampled

waveforms, desired frequency = 45 000 Hz, and ori-
ginal frequency = 30 000 Hz. The function outputs
a uniformly resampled event (48 sampled). Further
information is available in (Buneo et al 2016).

2.4. Data labeling
The proposed spike sorting pipeline is a combination
of supervised and unsupervised learning algorithms.
Supervised learning is gradient-based and minim-
izes the defined cost function by comparing predicted
output and true output. Therefore, labeled training
data is required. We labeled the given event either
as ‘SA’ or ‘BA’. Events representing action poten-
tials (neural activity) are labeled as SA. Contrar-
ily, events representing background activities (muscle
artifacts, noise) are labeled as BA. The process of
labeling is done in a semi-automatic way using a
Gaussian mixture model (GMM) and careful visual
inspection. A detailed explanation of the labeling pro-
cess is provided in a previous study (Saif-ur-rehman
et al 2019).

2.5. BAR data distribution for training
and validation
We used the pretrained model of SpikeDeeptector
for selecting meaningful channels. The other super-
vised learning method in the proposed spike sorting
pipeline is a novel algorithm called BAR. It takes a
single event from a meaningful channel and predicts
it as SA or BA. For training the BAR, we collected data
from human patients and NHPs. We considered four
recording sessions from each patient (U1 and U2)
implanted with Utah arrays and one recording ses-
sion from a patient (M1) implanted with microwires.
From NHPs, we considered data from one record-
ing of a subject (MT) implanted with a Utah array.
We also used data of six random days of subjects
(X/B) implanted with single micro-electrodes. The
distribution of data from all the sources is shown in
figure 1(a). Figure 1(b) shows the distribution of data
from each class. The total training examples of class
BA are 410 584. The training examples of class SA
are almost twice in number compared to the train-
ing examples of class BA. Consequently, to avoid
a bias during training, we randomly chose 400 000
examples from each class. These examples are further
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Figure 1. Training and validation data distribution for BAR. (a) Contribution of each source in training and validation dataset.
(b) Number of feature vectors of each class.

divided into ‘training dataset’ and ‘validation dataset’.
We used 70% of total examples to compile the train-
ing dataset and the remaining 30% of the examples
to compile the validation dataset. Training data is
used to update the parameters of the BAR model
during training process. However, validation data is
not used for training but to monitor the perform-
ance of the algorithm on unseen data during train-
ing. We also used validation data to avoid overfitting
by using early stopping criteria. The training process
is terminated, if the validation error of six consecut-
ive epochs increased or remained the same. Later, we
evaluated the resulting trained model of BAR on the
separate ‘evaluation dataset’. The evaluation dataset
is gathered from both Utah array patients, microwire
patient, NHP implanted with Utah array, and NHP
implanted with single microelectrodes. Further detail
of evaluation dataset is explained in result BAR.

2.6. SpikeDeep-classifier algorithm
In this study, we propose an offline automatic
spike sorter called SpikeDeep-Classifier. The archi-
tecture of SpikeDeep-Classifier is shown in figure 2.
We completely removed BA by stacking SpikeDeep-
tector (Saif-ur-rehman et al 2019) and BAR. Both
algorithms are based on supervised learning prin-
ciples, therefore they require labeled training data to
optimize learnable parameters iteratively. Extraction
of meaningful data is very critical in many neuros-
cience applications including BCI applications and
spike sorting. It has been shown that spike detection
is the first and most pivotal step in neuro-prosthetic
applications (Noc et al 2018). The next stage in this
pipeline is dimensionality reduction of events corres-
ponding to neural data using PCA, which is one of
the standard algorithms for dimensionality reduction
in spike sorting applications. Here, instead of using

the first two principal components for clustering, we
defined a criterion that keepsmost of the variability in
the data and gives us the resulting principal compon-
ents. We then employed a clustering algorithm on the
extracted features (from PCA) of events represent-
ing neural data. We showed that after the removal of
BA using BAR, spike sorting can be done with a very
simple clustering algorithm e.g. K-mean with a pre-
defined maximum number of clusters. Later, cluster
accept ormerge (CAOM) algorithmused a similarity-
based criterion to merge similar looking clusters and
accept distinct clusters as separate units.

We evaluated SpikeDeep-Classifier on different
recording sessions of different subjects using the same
trained model of supervised learning algorithms and
with the same, fixed values of the other two para-
meters (expected maximum number of clusters &
similarity threshold). These two hyperparameters are
tuned by visual inspection and then manually chan-
ging. The process of tuning hyperparameters is done
on a few recording sessions (not used for evaluation).
After finding the optimized values of the hyper-
parameters, they are kept fixed for all the record-
ing sessions for evaluation. The results show that
SpikeDeep-Classifier provides accuracy comparable
to a human expert.

2.7. SpikeDeeptector
The process of mapping raw signals into decision
space is shown in figure 2. SpikeDeeptector is the first
building block of the SpikeDeep-Classifier pipeline.
The goal of SpikeDeeptector is to select the chan-
nels recording neural data and discard the channels
recording only noise. In a previous study (Saif-ur-
rehman et al 2019) it was shown that SpikeDeep-
tector can do such discrimination. There, we intro-
duced a novel way to construct a feature vector by
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Figure 2. SpikeDeep-Classifier Pipeline. In the first stage SpikeDeeptector selects meaningful channels. These channels are then
further processed by BAR to extract neural events. Extracted neural events are then projected on a low-dimensional space using
PCA. We used a criterion that keeps 85% variability of data intact and reduced the dimension of inputs (neural events).
Clustering is then applied on the extracted feature space with a predefined number of clusters. Later, the CAOM algorithm
automatically accepts distinct clusters and merges similar looking clusters.

concatenating the batch of waveforms. We showed
that the novel way of feature vector construction
allows contextual learning and helps SpikeDeep-
tector to aggregate the statistics of the inputs in a
better way. SpikeDeeptector is based on the stand-
ard architecture of CNNs. We used batch normal-
ization and dropout as regularization techniques
to avoid overfitting. Additionally, we minimized
the regularized cross entropy cost by adding a L2
regularization term. The parameters of the defined
architecture of SpikeDeeptector were updated using
mini-batch gradient descent with momentum. We
used the data of only six recording sessions of one
human patient implanted with an Utah array for
training. Later, the trained model is evaluated on
the data of 130 recording sessions, collected from
two human patients implanted with Utah arrays and
six human patients implanted with microwires. The
reported classification accuracy of human patients
implanted with Utah arrays is 96.7% and the human
patients implanted withmicrowires 98.9%. The Spik-
eDeeptector predicts the labels of the given feature
vectors. However, the main goal of that study was to
assign the label to the given channel as neural or arti-
fact. Hence, we used a statistical criterion to assign a

label y(channel)pred to the given channel by calculat-
ing the mode of the predicted outputs ypred of all the
feature vectors of the given channel. Detailed descrip-
tion training and evaluation SpikeDeeptector can be
found in the Materials and Methods and Results
section of our study (Saif-ur-rehman et al 2019). The
trained model of SpikeDeeptector is available on git-
hub and can be downloaded using the following link.
https://github.com/saifhanjra/SpikeDeeptector/tree/
master/EvaluateTrainedModel

2.8. Background activity rejector (BAR)
SpikeDeeptector provides the list of channels record-
ing neural activities. These channels also record a con-
siderable amount of BA.We aim to detect and discard
all the events corresponding to BA from the chan-
nels SA (see figure 4). The BAR can be used as a pre-
processing step for a clustering algorithm. It can isol-
ate the overlapping events corresponding to SA and
BA (see figure 4(b)). As a result, it simplifies fur-
ther steps for spike sorting as shown in figure 4(c).
In this case, spike sorting becomes an ordinary
clustering problem after the removal of overlapped
events.
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Figure 3. Architecture of BAR. Process of mapping an input space to corresponding decision space. The input is convolved and
down sampled using convolutional and pooling layers. Size and number of kernels of each convolutional and pooling layer are
mentioned in the figure. We use zero padding during the first convolutional layer only.

Figure 4. BAR Significance. (a) predicted output of BAR. Events (Blue) are predicted as SA and events (grey) are predicted as BA.
(b) projection of corresponding events in 2-dimensional space using PCA. Few events corresponding to class SA and BA are
overlapping. (c) shows BAR isolates the overlapping events and makes later processing easier (clustering).

To achieve this goal, we made use of available
labeled training data and designed a supervised learn-
ing method based on the standard architecture of
convolutional neural networks (Krizhevsky et al 2012;
Guo et al 2017), as shown in figure 3. CNNs use
shared weights which enable translation invariance
and as a result produce more generic feature. These
learned features are also robust against time delays
and advancements in spike occurrence. Here, we used
1D CNNs because we are interested to learn the tem-
poral pattern only.

BAR takes an event consisting of 48 samples as an
input, and processes it through 3 convolutional layers,
two pooling layers, a fully connected layer and finally
classifies it as a ‘BA’ or as a ‘SA’ using a Softmax classi-
fier, as shown in figure 3. At each convolutional layer,
each kernel is convolved across the width of the input
volume and then slides with stride = 1. This results
in 1D convolved feature maps. Then, non-linearity is
introduced using an activation layer. Here, we used

rectified linear units (ReLUs) f(x) =max(x,0) (Nair
and Hinton 2010). Except for the first convolutional
layer, each convolutional layer is followed by a pool-
ing layer. The goal of pooling is to discard unnecessary
information. Here, we used max pooling. The size of
each kernel and pooling layer ismentioned in figure 3.

We minimized a regularized cross-entropy cost
function. To this end we added an L2 regulariza-
tion term to the cross-entropy cost function. In addi-
tion, we also used batch normalization to standardize
intermediate outputs of BAR to zero mean and unit
variance for the training inputs in each mini batch.
We used the same optimization algorithm (mini-
batch gradient descent with momentum) and tuned
the hyperparameters in the same way as reported in
our previous study (Saif-ur-rehman et al 2019).

We trained a robust BAR using; the data of two
species, five subjects, six brain areas, three different
types of electrodes and two recording systems. The
distribution of training data is shown in figure 1(b).
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2.9. Dimensionality reduction
Dimensionality reduction is usually performed using
unsupervised learning algorithms. Spike sorting
algorithms try to eliminate redundant features and
construct feature vectors for clustering algorithms.
PCA is one of the most used algorithms by the com-
munity (Lewicki 1998, Adamos et al 2008; Souza
et al 2018). PCA constructs low dimensional feature
vectors by doing eigenvalue or SVD of the covari-
ance matrix constructed from the presented data.
Most spike sorting algorithms project high dimen-
sional events onto the corresponding 2D or 3D prin-
cipal component space using the eigenvectors. The
PCA algorithm ensures that this 2D or 3D projec-
tion captures the highest variability in the presented
data. However, it is possible that this low dimen-
sional projection does not capture enough discrim-
inatory power. Therefore, in this study we apply a
criterion that keeps a certain amount of variability of
the presented data intact and constructs low dimen-
sional feature vectors. Here, we select the number
of principal components (features) so that 85% of
variability of the data remains intact. The criterion
of keeping 85% variability intact resulted in at most
seven or eight principal components. We used this
criterion only for clustering. For visualization pur-
poses, we considered the first and second principal
components.

2.10. Clustering method
An important part of this study is to show that
spike sorting can be casted as an ordinary cluster-
ing problem upon the removal of BA. Usually, neural
data generated further away from the tips of the
recording electrodes and BA overlap as shown in
figures 4(a) and (b). Therefore, it is challenging for
any clustering algorithm to recognize them as separ-
ate clusters. However, supervised learning algorithms
are very powerful models. Particularly, deep learn-
ing algorithms can learn hidden patterns. For this
reason, we trained a deep learning algorithm to isol-
ate BA as shown figure 4(b). After the removal of BA,
clustering becomes trivial, as shown in figure 4(c).
Two clusters are quite distinct from each other and
are easy to identify as such. Even the simplest clus-
tering algorithm like K-mean can perform well as
shown in figure 4(c). Figures 4(b) and (c) presents
visualization in 2D space. However, the clustering
algorithm is provided with more than two PCA fea-
tures by applying the criteria explained in Dimen-
sionality Reduction.

We used k-means as a clustering algorithm with a
squared Euclidean distance metric and K-means++
algorithm for initializing the centers of the defined
number of clusters. We defined K as the maximum
number of expected clusters, which we empirically
determined to be 3. In a later step we accept or reject
the clusters as different neurons.

2.11. Cluster accept or merge algorithm (CAOM)
We used K-means clustering and defined K as a max-
imum number of expected clusters on one channel.
Since most channels record activity of one or two
neurons, we need amethod to reject ormerge clusters
at need. Here, we introduced a very simple method
to accept distinct clusters and merge similar look-
ing clusters. We are considering the data of multiple
species, recorded from different brain areas using
different recording hardware and different types of
implanted electrodes. It is possible that recorded data
can be on different scales. Therefore, we first nor-
malized the data using Z-normalization (Patro and
Sahu 2015) as a preprocessing step. Z-normalization
ensures that all the features have zero mean and
standard deviation equals to one. Then, we measured
the similarity between each cluster. Hence, we com-
pared the mean Euclidean distance of each cluster.
We either merge two clusters with minimal distance
less than the defined threshold and keep the remain-
ing clusters unaffected, or all the defined clusters are
accepted as representing independent sources (if the
mean Euclidean distance of all the clusters is greater
than defined threshold). In the case of merging two
clusters, the new mean of the merged clusters is cal-
culated and compared with the remaining cluster
means. This process of merging clusters is repeated
unless the mean Euclidean distance of each cluster
from each other is greater than a defined threshold.

The threshold distance is the hyperparameter
of the CAOM algorithm. We tuned the value of
‘threshold distance’ empirically by visual inspection
and fixed it to 5.5. Later, we used the same value for
all recording sessions used for evaluation.

We used ‘Deep learning’ and ‘Neural Networks’
toolboxes of MATLAB (The MathWorks, Inc) to
define and train the SpikeDeeptector and BAR
models. The source code of SpikeDeep-Classifier is
available online and can be downloaded using the
following link. https://github.com/saifhanjra/Spike
DeepClassifier

3. Results

3.1. Evaluationmetrics
We reported classification accuracy for SpikeDeep-
tector and BAR. In addition, to ensure transpar-
ency, we also reported recall for BAR.Mathematically,
equations (1) and (2) represent accuracy and recall,
respectively.

Accuracy=

(
Number of correct predictions

Total number of examples

)
× 100

(1)

Recall=

(
True positives

True postives+ False negatives

)
× 100

(2)

8

https://github.com/saifhanjra/SpikeDeepClassifier
https://github.com/saifhanjra/SpikeDeepClassifier


J. Neural Eng. 18 (2021) 016009 M Saif-ur-Rehman et al

Table 2. Cumulative Performance evaluation of SpikeDeeptector on the data recorded from human patients and NHPs during multiple
recording sessions.

Subject group
Number
of sessions

Neural chan-
nels (neural
channels/total
channels)

Artifact chan-
nels (artifacts
channels/total
channels) False positives False negatives

Utah array
(Humans—U1 and
U2)

6 109/576 467/576 2 0

Microwires
(Humans—M2)

1 15/16 1/16 0 0

Utah array (NHP—
MM)

1 95/96 1/96 0 1

Single microelec-
trodes (NHP—X/B)

4 4/4 0 0 0

The evaluation performance of the CAOM is
represented using classification accuracy and Rand
index. Rand index is the measure of the similarity
between two clustering algorithms. It also represents
the measure of the percentage of correct decisions
made by the algorithm. Mathematically, equation (3)
represents the Rand index in percentages.

Rand index

=

 True positives+True negatives

True positives+ False positives
+True negatives+ False negatives


(3)

3.2. Evaluation datasets
SpikeDeep-Classifier is a pipeline that presents a uni-
versal solution to the spike sorting problem. We
evaluated the SpikeDeep-Classifier pipeline on the
data of three human patients and two NHPs. Two
human patients (U1 & U2) were implanted with
Utah arrays and for each patient three recording ses-
sionswere considered for evaluation; the third human
patient (M2) was implanted with microwires and
only one recording session was available. Similarly,
twoNHPswere either implantedwith twoUtah arrays
or single microelectrodes. One recording session of
an Utah array subject (MM) and four recording ses-
sions of another subject (X/B) are considered for
evaluation.

3.3. SpikeDeeptector
In this study, we did not train the model of Spik-
eDeeptector. We used the pretrained (previously
trained) model of SpikeDeeptector that we used for
our previously published study (Saif-ur-rehman et al
2019). We evaluated the pre-trained model of Spik-
eDeeptector on the data of four subject groups and
multiple recording sessions as shown in table 2. Spik-
eDeeptector has wrongly classified only 3 channels

out of 692 channels, which shows SpikeDeeptector
has a good quality of generalization. In addition,
we also highlighted the consistent performance of
SpikeDeeptector by evaluating it on each session
individually. This evaluation aspect is evident on
all three different types of recording sessions with
few, some and several channels recording neural
activities. Evaluation performance of SpikeDeep-
tector on each type of recording session is repor-
ted in (supplementary table 9 (available online at
stacks.iop.org/JNE/18/016009/mmedia)).

3.4. Background activity rejector (BAR)
SpikeDeeptector correctly identifies the channelswith
neural activities with accuracy of 99.6% (see table 2,
only 3 wrong predictions out of total 692 channels).
Here, we employed the trained model of BAR and
evaluated on the channels which have been identified
as neural channels by SpikeDeeptector.

We evaluated the trained model of BAR on the
data of all seven evaluation recording sessions of three
human patients. Subjects were implanted with either
Utah arrays or microwires in different areas of the
brain (PPC or Hippocampus). We reported the eval-
uation accuracy in a confusion matrix as shown in
table 3. BAR provides 93.4% recall on the feature vec-
tors of class ‘SA’ and 86.4% recall on the feature vec-
tor of class ‘BA’. Data distribution between the two
classes is unbalanced with 83.6% of data represent-
ing class ‘SA’ and 16.4% of data representing class
‘BA’. The overall classification accuracy is 92.3%. In
addition to cumulative performance on the data of
all human subjects, we also reported the evaluation
performance of BAR on each recording session indi-
vidually (see section supplementary material: Back-
ground activity rejector). Performance of BAR dur-
ing each individual recording session remains consist-
ent as shown in supplementary tables 10 and 11with a
minimum andmaximum reported accuracy of 88.9%
and 95.4%.
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Table 3. Evaluation performance of BAR on the data recorded
from human patients implanted with Utah arrays and microwires.
The confusion matrix reports the overall accuracy and the
classification accuracy of each class.

The7 NHPs datasets contain the events that only
correspond to class ‘spike activity’.Here, the classifica-
tion accuracy of BARon selected recording sessions of
NHP (MM) implanted with a Utah array on premo-
tor is 92.14% and on primarymotor cortex is 99.03%.
Similarly, the average classification accuracy of NHP
(X/B) on four single electrodes is 95.04%.

3.4.1. Visualization
We selected three different examples for visualiza-
tion. Figure 5 shows the waveforms with associated
ground truth labels and predicted labels along with
the mean waveforms of each class and the projection
of waveforms in 2D using PCA. For visualization, we
showed the response of BAR on three different types
of recording channels. Figure 5(a) shows the response
of BAR on the channel where SA events and BA events
are only partially overlapped in PCA space. However,
in figure 5(b) SA events and BA events are almost
completely overlapped in PCA space. Hence, it is a
difficult task for a clustering algorithm to discrim-
inate two clusters. Figure 5(c) shows another type of
channel which records only a few events correspond-
ing to BA. These few events hardly represent a separ-
ate cluster. In all the above explained conditions, BAR
performs equally good (or even better) in comparison
with (imperfect) ground truths.

3.5. Significance of BAR: overlapping waveforms
Events representing spikes and BA can completely
overlap as shown in figure 6(a). As a result, even
humans can make mistakes during labeling (see
figure 6(a)) where during labeling, a human cur-
ator missed a distinct unit by merging it with BA.

7The confusion matrix in Table 3 is not readable. Please resize it.

However, by considering BAR as a preprocessing step
before clustering, the process of clustering becomes
trivial, as shown in figure 6(b). Inclusion of BAR in
the SpikeDeep-classifier pipeline successfully isolates
the overlapped clusters. As a result, spike sorting can
become an ordinary clustering problem (see figure 6).

We present a fewmore examples for visual insight
in supplementary material (supplementary figures
11(a) and 12(a)). The presented examples show that
BAR can facilitate the clustering process by removing
overlapped events.

3.6. Clustering & CAOM
SpikeDeeptector in conjunction with BAR nearly
completely removes BA in two steps. After the
removal of BA, the remaining data (SA) is used to
identify the number of neural units present on a single
channel. This process is taking place in two steps:
the first step involves the process of clustering with
a predefined maximum number of clusters and in the
second step similarity between each cluster is meas-
ured as explained in section ‘CAOM’. Similar looking
clusters are merged, and distinct looking clusters are
treated as separate clusters (units). We have defined
the maximum number of clusters as 3 and the simil-
arity threshold as 5.5.

3.6.1. Humans: Utah array subjects
We used K-means clustering (see section ‘Cluster-
ing Method’) and then CAOM (see section ‘Cluster
accept or merge algorithm (CAOM)’) to accept or
merge the clusters. We evaluated our methods on six
recording sessions of human patients implanted with
Utah arrays. Out of 576 channels only 109 channels
were predicted as neural channels. Two predictions
were false positives.Most of the channels either record
one neural source or two neural sources on a chan-
nel. However, there were few channels, where three
neural sources were recorded (see table 4). K-means
clustering in conjunction with CAOM predicted the
right number of clusters onmost of the channels. Out
of 107 channels only 8 channels were predicted with a
different number of clusters than the ground truths.
We use the Rand index to assess the quality of the
clustering method. The Rand index is a measure of
similarity between two data clustering methods. The
value of the Rand index is between 0 and 1. 1 means
that both clustering (ground truth, predicted) meth-
ods produced the exact same results, and 0 indicate
that two data clustering methods completely disagree
with each other. The achieved mean Rand index is
more than 0.8 for any number of neural units on a
channel (see table 4). Similarly, the achieved mean
accuracy for any number of units is more than 87%.

Table 4 shows the cumulative performance of
Clustering & CAOM on all the recording sessions
of human patients implanted with Utah arrays. In
addition to that we also show the performance of
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Figure 5. Visualization examples of BAR in three different cases. (a) BA and SA are partially overlapped. (b) BA and SA are
completely overlapped. (c) Partially overlapped but only few events represent class artifacts. In all cases, the first row shows the
events with predicted labels, mean waveform of each predicted class, projection in 2D using PCA, and 2D projection of events
predicted as spike. The second row shows the events with ground truth labels, mean waveforms and corresponding 2D projections.

Clustering & CAOM on all individual recording ses-
sions (see supplementary table 12). These recording
sessions have different numbers of channels with dif-
ferent numbers of units. The performance of Cluster-
ing &CAOM remains consistent during all individual
recording sessions (see supplementary table 12).

3.6.2. Visualization
We also present an example for visual inspec-
tion with three neural units on a channel (see
figure 7). Figure 7(a) shows the predicted output of
the K-means clustering algorithm with 3 clusters.
The output of CAOM is shown in the second
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Figure 6. Significance of BAR (Visualization). (a) Response of BAR along with ground truth labels (human). BAR has clearly
outperformed the human in this case. Here, a non-neural cluster and a spike cluster were completely overlapped. Therefore, even
the human can misclassify some of the events and can miss a neural unit. (b) Shows the result of clustering and CAOM. The
SpikeDeep-Classifier pipeline outperforms the human spike sorter because BAR isolates overlapping clusters. Mean waveforms of
both clusters (see Result CAOM) clearly show two distinct neural units as the shapes of both mean waveforms resemble more
neural units than to BA. However, the human curator missed one cluster and labeled that as BA (see ground-truth).

Table 4. Performance evaluation of clustering method & CAOM on the data of six recording sessions of human patients implanted with
Utah arrays.

Number of units No. of channels (true)
No. of channels (Pred.)
(correct, wrong) Rand index Accuracy (%)

3 18 (18,1) 0.84± 0.08 87.76± 5.17
2 47 (44,5) 0.85± 0. 08 89.09± 6.69
1 42 (37,2) 0.81± 0.12 87.25± 11.01

stage (figure 7(b)). Here the similarity between
units is calculated based on the criteria explained
in ‘CAOM’. All three clusters have been considered
as distinct clusters. Figure 7(c) shows the ground
truth waveforms, mean waveforms and the PCA

projection in 2D. Predicted outputs (figure 7(b))
and ground truths (figure 7(c)) look quite similar,
which speaks for a high quality of the SpikeDeep-
Classifier pipeline. We also present an example with
two clusters (see supplementary figure 13(a)) and
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Figure 7. Clustering algorithm in conjunction with CAOM (Visualization). (a) Output of K-means clustering algorithm with the
pre-defined number of clusters equal to 3. (b) The output of the CAOM algorithm. Here, according to the defined criteria of
CAOM, all three clusters are found to be distinct. (c) shows events with ground-truth labels. Predicted labels and ground truth
look quite similar.

another example with one unit on a channel (see sup-
plementary figure 13(b)).

Similarly, figure 8 also provides visual insight into
the performance of the SpikeDeep-Classifier pipeline.
Figure 8 shows the output (PCA projection in 2D)
of the clustering algorithm, CAOM and the ground
truths. Figure 8(a) shows an example of three neural
units on a channel, figure 8(b) shows an example with
two neural units on a channel and figure 8(c) shows
an example of a channel with one neural unit. In
all mentioned cases the SpikeDeep-Classifier pipeline
has not only been able to predict the correct number
of neural units on a channel but also the predictions
are very similar to the ground truth.

3.7. Clustering & CAOM: NHPUtah array
We aim for a universal solution to the spike sort-
ing problem. For that reason, we first evaluated our
trained models on data of multiple sessions of the
same species (humans) where different kinds of elec-
trodes were used. Additionally, we also evaluated the
same trained model in multiple recording sessions
of another species (NHPs) with different subjects
implanted with different kinds of electrodes and dif-
ferent recording hardware.

In this section, we will discuss the performance
of Clustering & CAOM on the data of a NHP (MM)
implanted with Utah arrays. We kept the parameters
of the clustering algorithm andCAOM fixed (number
of clusters = 3, similarity threshold = 5.5). In the
recording session there is only one channel with four
neural units (see table 5). In that case, our Cluster-
ing and CAOM method has been able to predict 3

clusters with a Rand index of 0.78 and a classification
accuracy of 84.24%. Even though the results based on
the provided ground truths are suboptimal, there are
12 out of 51 channels, where SpikeDeep-Classifier has
predicted a different number of neural units as com-
pared to the provided ground truths (See table 5).
However, it is difficult to conclude about the cor-
rect number of neural units on most of these chan-
nels. Visual insights of these channels are provided in
figures 9 and supplementary figure 14. Some of these
channels are wrongly labeled (see figures 9(a), (b),
(e) and supplementary figure 14(a)) and for some
channels it not clear about the number of distinct
units (see figures 9(d), (f) and supplementary 14(b),
(d), (e), (f)), and the only two channels shown in
figures 9(c) and supplementary 14(c) were misclassi-
fied by SpikeDeep-Classifier.

NHP subject MM was implanted with two Utah
arrays in two different brain areas (premotor cor-
tex & primary motor cortex). Here, we have repor-
ted the performance of SpikeDeep-Classifier of one
array implanted in premotor cortex (see table 5).
SpikeDeep-classifier performs equally well on the
data of another brain area (primary motor cortex)
(see Supplementary Material: Clustering and CAOM:
Utah array NHP: supplementary table 13). The
reason of reporting the performance of SpikeDeep-
Classifier on both arrays separately is to evaluate the
consistency of the algorithm.

3.7.1. Visualization
We provided visual insight of a few correctly clas-
sified examples (number of clusters on a channel)
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Figure 8. Examples of Clustering and CAOM (Visualization). (a) 2D projection of events with predicted (k-means+ CAOM) and
ground-truths of a channel with three distinct units. (b) 2D projection of events with predicted (k-means+ CAOM) and
ground-truth labels of a channel with two distinct units. (c) 2D projection of events with predicted (k-means+ CAOM) and
ground-truth labels of a channel with one distinct unit. The first row of each example shows the output of K-means clustering
algorithm, the second row shows the output of CAOM and the third row shows the ground truth label of the given events.

Table 5. Performance evaluation of the clustering method & CAOM on the recording session of a NHP (MM) implanted with a Utah
array in Premotor cortex.

Number of Units
No. of Channels

(True)
No. of Channels (Pred.)
(Correct, wrong) Rand index Accuracy (%)

4 1 (0, 1) 0.78 84.24
3 7 (5, 3) 0.86± 0.10 84.70± 11.79
2 25 (22,8) 0.88± 0.11 90.06± 10.20
1 18 (12, 0) 0.84± 0.18 89.02± 13.20

in section ‘Results: Clustering & CAOM: Visualiza-
tion’. Here, we show a fewwrongly classified examples
for visual inspection (see figure 9). Even though the
number of distinct units (clusters) in most of these
examples are either debatable or wrongly labeled, the
Rand index which is a measure of similarity between
SpikeDeep-Classifier and the provided ground truths
remains consistent. The average Rand index for dif-
ferent numbers of units on the channels is given
in table 5. The Rand index in table 5 shows that
the SpikeDeep-Classifier and the ground truth on
average coincide with each other more than 84% in
terms of the predicting class labels. However, at some
instants SpikeDeep-Classifier can output debatable
splits between clusters, as shown in figure 9(c). As
both the predicted mean waveforms in this example
look similar so it is hard to make a definitive split
between them. Human curators labeled them as one
class whereas the SpikeDeep-Classifier predicted two
separate clusters.

3.8. Clustering & CAOM: NHP single
micro-electrode
We showed that SpikeDeep-classifier provides a reli-
able solution to the spike sorting problem. We evalu-
ated it on data of humans in multiple recording ses-
sions using different kinds of electrodes (see tables 4
and supplementary table 12). Additionally, we eval-
uated it on data from an NHP implanted with Utah
arrays in two different areas of the brain (tables 5
and supplementary table 13). Furthermore, we eval-
uated it on data of a second NHP implanted (X/B)
with a single micro electrode. In this case, we did
not have ground truth labels. Therefore, we show
the performance of our SpikeDeep-classifier pipeline
by presenting examples. We selected one example
of each case. Figure 10(a) shows an example of a
channel with one neural unit, figure 10(b) shows
an example of a channel with two neural units, and
figure 10(c) shows an example of a channel with three
units.
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Figure 9. Examples: Wrong classification in terms of number of clusters on a channel. For each example, the first row shows the
mean waveforms of predicted clusters and 2D projections of events with predicted labels, the second row shows the mean of each
cluster and 2D projection of events of assigned labels (ground-truth).

3.9. Performance comparison of
spikedeep-classifier with human experts
We asked twomembers of our lab to annotate data for
the comparison.We have randomly selected a record-
ing session of subject (U1) and asked our lab mem-
bers to annotate the data with the help of another
in-house spike sorting algorithm. This in-house soft-
ware provides visualization of all the detected events
and their projection on a 2D PCA space of a chan-
nel. Hence, after the visual inspection of a channel,
a curator defines the number of units along with
their initial points for the clustering algorithm. Lastly,
GMM was used for the clustering. In case the GMM
does not provide satisfactory results, the curator has
the possibility of manual spike sorting. All these
steps were repeated for each channel of an implanted
array.

For the selected recording session, both human
expert 1 (H1) and human expert 2 (H2) predicted

19 out of 96 channels with one neural unit (see
table 6). Both (H1∩ H2) agreed on 18 of those
channels to have only one neural unit. Whereas
SpikeDeep-Classifier predicted 14 out of 96 chan-
nels with one neural unit, which were also pre-
dicted (H1∩H2∩SpikeDeep-Classifier) as the chan-
nels with one neural unit by H1 and H2. The
achieved mean Rand index with one neural unit
for H1 and H2 is 0.8 and 0.81 respectively. Sim-
ilarly, H1 assigned 7 channels and H2 assigned
8 channels with two neural units. Both (H1 ∩
H2) agreed on 5 of those channels. In this case
SpikeDeep-Classifier predicted 12 channels with two
neural units on it. Out of these 12 channels H1
and SpikeDeep-Classifier (H1∩SpikeDeep-Classifier)
agreed on 6 channels whereas H2 and SpikeDeep-
Classifier (H2∩SpikeDeep-Classifier) agreed on 7
channels. There were 5 channels common in all three
(H1∩H2∩SpikeDeep-Classifier). The achieved mean
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Figure 10. Visualization of clustering & CAOM of few channels NHP implanted with single microelectrode recorded using Plexon
(Plexon Inc. Dallas, TX, United States). We did not have ground truth labels in this case. However, results (visual inspection) show
that the SpikeDeep-classifier performs a good generalization. (a) Example with one neural unit. (b) Example with two-neural
units. (c) Example with three neural units.

Table 6. Performance comparison of SpikeDeep-Classifier with human experts. First column shows the number of units predicted on
a channel by human experts and SpikeDeep-Classifier. Second column shows the ID of human experts. Third column shows the number
of channels predicted by the human corresponding to the number of neural units. Fourth column shows the total number of channels
predicted by SpikeDeep-Classifier corresponding to the number of neural units. It also shows the right and wrongly predicted channels.
Here the ground truth is taken as the predictions made by the human experts. Last column shows the Rand index corresponding to the
HI and H2 for the number of neural units on the channels.

No. of units on a
channel (Human expert Id)

No. of channels
(annotated by
human experts)

No. of channels
(predicted) (correct,
wrong) Rand index (%)

H1 19 14 (14, 0) 0.80± 0.15
1

H2 19 14 (14, 0) 0.81± 0.13
H1 7 12 (6, 6) 0.84± 0.10

2
H2 8 12 (7,5) 0.83± 0.09
H1 1 1 (0, 1) 0.74

3
H2 0 1 (0, 1) –

Rand index with two neural units for H1 and H2 is
0.84 and 0.83, respectively. Lastly, H1 assigned one
channel with three units, which was predicted with
2 neural units by both H2 and SpikeDeep-Classifier.

4. Discussion

In this study, we proposed a novel spike sorting
pipeline called SpikeDeep-Classifier, which identifies
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the number of neural units, along with their activities
on a channel. We claimed that SpikeDeep-Classifier
presents a generalized solution to the spike sort-
ing problem. By generalized solution, we mean that
the SpikeDeep-Classifier model (pre-trained and pre-
tuned) has the ability to successfully perform spike
sorting on the data of multiple recording sessions
of multiple species, data recorded from different
brain areas using different types of implanted elec-
trodes with different recording hardware. To the best
of our knowledge, there is no other method that
presents such a generalized solution to the spike sort-
ing problem. We validated our claim of providing a
generalized solution to the spike sorting problem by
evaluating SpikeDeep-Classifier model (pre-trained
and pre-tuned) on versatile labeled datasets which
include two self-labeled and two publicly available
labeled datasets. The labeled datasets include the data
from four human patients and four NHPs subjects
(macaques), which were recorded from five different
brain areas including PPC, anterior hippocampus,
primary motor cortex, premotor cortex, and superior
parietal lobule.

In addition, we used a publicly available simu-
lated labeled dataset (Quiroga et al 2004) to discuss
the performance comparison of SpikeDeep-classifier
with few existing solutions. The dataset is available
with Spike times and associated labels. The data-
set contains a total of four examples. Each example
is recorded at four different noise levels (0.05, 0.1,
0.15, 0.2). Further details of the dataset are avail-
able in (Quiroga et al 2004). Here, we compared our
algorithm with the eight existing algorithms which
present an automatic solution to the spike sorting
problem. These algorithms are presented in (Nguyen
et al 2015). The process of automatic spike sorting
in the provided solution is taking place in two steps:
feature vectors construction and automatic cluster-
ing. The feature vectors construction is taken place by
either employing the wavelet transform (WT) or dif-
fusionmaps (DM). Then the three different solutions
to automatic clustering are presented using super-
paramagnetic clustering (SPC), mean shift cluster-
ing algorithms, and K-means clustering. SPC is an
automatic clustering algorithm based on the sim-
ulated interaction between each data point and its
K nearest neighbors. Here, a range of temperature
(hyperparameter) is required pre-specified to auto-
matically determine the number of distinct clusters.
Mean shift is an alternative algorithm to the SPC
as it automatically selects the number of distinct
clusters. However, it has band width as a hyperpara-
meter. Temperature and bandwidth are required to
be carefully tuned to achieve the optimal solution to
the problem. As SPC and mean shift do not require
prior determination of the number of clusters, the
threshold of three clusters, which is equal to the real
number (ground truth) of clusters is assigned. Once
a temperature is fixed in SPC (or a band width is

selected inmean shift), if the number of automatically
selected clusters is greater than 3, then the 3 largest
overlapping with most overlapping are considered
to calculate the accuracy. In mean shift, a range of
bandwidth values are nominated, and the greatest
accuracy is reported for the comparison. Lastly, K-
means requires a predefined number of clusters for
clustering. The number of predefined clusters are
estimated and provided by either Silhouette statistics
(SH) or gap statistic (GS). The numbers in the par-
entheses adjacent to values in the k-mean columns
indicate the number of clusters, if distinct from 3 (see
table 7). We used PCA for feature vectors extraction
and CAOM in conjunction with K-means for auto-
matic clustering. Table 7 presents the results of the
different combination of the discussed feature extrac-
tion algorithms and automatic clustering solutions.
Table 7 shows that our proposed solution has com-
prehensively outperformed 7 out of 8 algorithms in
terms of mean classification accuracy. However, it
provides comparable performance to (DM, SH+K-
means). Nonetheless, SpikeDeep-Classifier performs
better than (DM, SH+K-means) in terms of predict-
ing the correct number of neural units on a chan-
nel. DM, SH+K-means makes 7 mistakes in pre-
dicting the correct number of neural units, however,
SpikeDeep-Classifier made only 2 mistakes as shown
in table 7.

This simulated dataset also contains an additional
example which records the activity of bursting neur-
ons. Here, the classification accuracy of CAOM+ K-
means is 92.18%.

We used BAR to discard the detected events cor-
responding to BA. Furthermore, BAR was compared
with another method presented in (Quiroga et al
2004) on the above-mentioned simulated dataset.
In (Quiroga et al 2004) spike detection was per-
formed using an automatic amplitude thresholding
after bandpass filtering the signal (300–6000 Hz, four
pole Butterworth filter). The following setting of
threshold (Thr) was used.

Thr= 4σn;σn =median

{
|x|

0.6745

}
(4)

Here, x is the band pass-filtered signal and σn is
an estimate of the standard deviation of the back-
ground noise (Donoho and Johnstone 1994). The
performance of spike detection algorithm and BAR is
shown in table 8. The column ‘No. of Spikes’ shows
the total number of events labeled as spikes where
the overlapping spikes are mentioned in parenthesis.
The brackets in misses and false positives columns
show the number of events that were misclassified
by the original method proposed in (Quiroga et al
2004) and BAR. The column ‘Misses’ shows the per-
formance comparison of two methods in total as
well as overlapping spikes. The dataset is available
with ground truth, therefore we also employed BAR
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Table 8. Performance Comparison of BAR with another method of extracting neural events from the raw data.

Examples Noise levels No. of spikes
Misses (original,
BAR)

False positives
(original, BAR)

Example 1 0.05 3514 (785) [17(193), 0(20)] [711, 190]
0.10 3522 (769) [2(177), 2 (33)] [57, 11]
0.15 3477 (784) [145(215), 43(57)] [14, 5]
0.20 3474 (796) [714(275), 118(95)] [10, 2]

Example 2 0.05 3410 (791) [0(174), 0(0)] [0, 0]
0.10 3520 (826) [0(191), 0(1)] [2, 0]
0.15 3411(763) [10(173), 14(3)] [1, 0]
0.20 3526 (811) [376(256), 44(18)] [5, 1]

Example 3 0.05 3383 (767) [1 (210), 3(133)] [63, 18]
0.10 3448 (810) [0 (191),0(175)] [10, 7]
0.15 3472 (812) [8 (203), 10 (190)] [6, 16]
0.20 3414 (790) [184(219), 170(171)] [2, 5]

Example 4 0.05 3364 (829) [0(182), 0(2)] [1, 0]
0.1 3462 (720) [0(152), 0(10)] [5, 3]
0.15 3440 (809) [3(186), 5(23)] [4, 0]
0.2 3493 (777) [262(228), 121(41)] [2, 0]

on all the events labeled as spike and the results in
table 8 confirm that false negatives (misses) can also
be reduced. Table 8 also shows that performance of
BAR remains consistent at different noise levels. Sim-
ilarly, classification accuracy of BAR on the addi-
tional example which records the activity of burst-
ing neurons is 99.53% with 13 wrong predictions of
overlapped spikes and 3 wrong predictions of non-
overlapped spikes. Thus, this confirms that adding
BAR as a preprocessing step is quite logical and can
help to improve the performance of the clustering
algorithms.

The result of this study supports our hypothesis
of providing a generalized solution to the spike sort-
ing problem. Although SpikeDeep-classifier success-
fully provides a favorable solution to the spike sort-
ing problem, there is still room of improvement in
the CAOM algorithm, which automatically determ-
ines the number of neural units on a channel. In
this study, we fixed the hyperparameters of CAOM to
find the exact number of neural units on a recorded
channel e.g. the maximum possible number of neural
units on a channel is fixed to be 3. Some record-
ing setups result in higher neural units per channel,
but these cases typically do not occur in the inten-
ded chronically implanted electrode scenario. In such
a case, the hyperparameters of CAOM are required
to be re-tuned. Hence, CAOM can be replaced with
an algorithm that provides a more general solution
to determine the number of clusters. Here, we can
propose Silhouette statistics as an alternative solu-
tion to CAOM because it provides comparable res-
ults to CAOM on the simulated labeled data set, as
shown in table 7 in terms of classification accur-
acy. Silhouette is a more general solution for auto-
matic clustering. However, CAOM performs better
than Silhouette statistics in determining the num-
ber of neural units because it requires an educated
guess about the maximum number of neural units.

An educated guess about the number of neural units
on a channel provides a good initial point to CAOM.
As a result, it not only determines the number of
neural units more accurately but also the computa-
tional cost of the algorithm is reduced. The computa-
tional cost of the algorithm is an important factor for
online applications with microelectrode arrays with
hundreds of channels. It is also possible that several
microelectrode arrays are implanted, simultaneously.
Therefore, less computational cost of CAOM makes
it more suitable as a feature extractor for BCI decod-
ing applications. Silhouette on the other hand can be
used as a replacement of CAOM if the spike sorting
is required only on a few channels or if no time con-
straints are given.

Here, we proposed SpikeDeeptector in conjunc-
tion with BAR to first remove the unwanted channels
and then BA from the selected channels. SpikeDeep-
tector enable contextual learning by concatenating
the batch of events to construct feature vectors. The
SpikeDeeptectorwas trained on the data of six record-
ing sessions of only one human patient, as mentioned
in our previous study (Saif-ur-rehman et al 2019).
Here, we used the resultant pretrainedmodel of Spik-
eDeeptector and evaluate it on the evaluation dataset.
The SpikeDeeptector successfully select the channels
recording neural activity with the average accuracy of
99.6%. Contrarily, BAR constructs the feature vector
with one waveform. When it is trained on the data
of one patient and evaluated on the data of multiple
patients the accuracy drops to 85.8%. Therefore, for
BAR we considered the fine tuning by retraining it on
the dataset compiled frommultiple subjects. By doing
so, we raised the classification accuracy from 85.8%
to accuracy of 92.3%. Henceforth, BAR alone should
not be used to first select themeaningful channels and
then to discard BA from the selected channels.

For the future, we aim to extend the SpikeDeep-
Classifier algorithm by proposing an online version
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of it. In the online version of SpikeDeep-Classifier, we
aim to replace the clustering algorithm with a super-
vised learning algorithm by using a large labeled data-
set making the whole pipeline fully automatic and
online.
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