
The Journal of Neuroscience, December 1994, 74(12): 7381-7392 

Transparent Motion Perception as Detection of Unbalanced Motion 
Signals. III. Modeling 

Ning Qian,a Richard A. Andersen, and Edward H. Adelson 

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

In the preceding two companion articles we studied the con- 
ditions under which transparent motion perception occurs 
through psychophysical experiments, and investigated the 
underlining neural mechanisms through physiological re- 
cordings. The main finding of our perceptual experiments 
was that whenever a display has finely balanced motion 
signals in all local areas, it is perceptually nontransparent, 
and that transparent displays always contain motion signals 
in different directions that are either spatially unbalanced, 
or unbalanced in their disparity or spatial frequency con- 
tents. In the physiological experiments, we found two stages 
in the processing of transparent stimuli. The first stage is 
located primarily in area Vl . At this stage motion measure- 
ments are made and Vl cells respond well to both the bal- 
anced, nontransparent stimuli and the unbalanced, percep- 
tually transparent stimuli. The second stage is located 
primarily in area MT. MT cells show strong suppression be- 
tween opposite directions of motion. The suppression for 
the unbalanced, transparent stimuli is significantly less than 
that for the balanced, nontransparent stimuli. Therefore, the 
activity in the second, MT stage correlates better with the 
perception of motion transparency than the first, Vl stage, 
which does not distinguish reliably between transparent and 
nontransparent motion. 

The above experiments suggest a two-stage model of mo- 
tion perception with a motion measurement stage in Vl and 
an opponent-direction suppression stage in area MT. In this 
article we explicitly test this model through analysis and 
computer simulations, and compare the response of the 
model to the perceptual and physiological results using the 
same balanced and unbalanced stimuli we used in the ex- 
periments. In the first stage of the computational model, 
motion energies in different spatial frequency and disparity 
ranges are extracted from each local region. Similar to VI, 
this stage does not distinguish between the balanced and 
unbalanced stimuli. In the subsequent stage motion energies 
of opposite directions but with same spatial frequency and 
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disparity contents suppress each other using subtractive or 
divisive inhibition. This stage responds significantly better 
to the transparent stimuli than to the nontransparent ones, 
in agreement with MT activity. 

[Key words: motion transparency, motion energy models, 
stereopsis, motion-stereo integration, spatial frequency, 
computer modeling] 

Motion is a rich source of various types of useful information. 
For example, it allows us to determine three-dimensional struc- 
tures of moving objects, and to segment a complex scene into 
its meaningful parts (see Nakayama, 1985, for a review). The 
task of motion detection is relatively easy when there is only a 
single point-like object moving on a blank background. Our 
visual system, however, has to handle (and is able to handle) 
much more complicated situations. For instance, when an object 
with differently oriented boundaries is moving in a certain di- 
rection, it generates local motion vectors that are perpendicular 
to the boundaries (the “aperture problem”). These vectors may 
not be pointing in the true direction of motion. Even more 
complex is the situation where there are partial occlusions and 
translucent surfaces in a scene with moving objects. In these 
cases the visual system has to represent more than one motion 
in the same part of space-the problem of transparent motion 
perception. A laboratory demonstration of motion transparency 
uses two independent sets of random dots moving in opposite 
directions in the same part of a video monitor. Two transparent 
surfaces, one defined by each set of dots, are seen as continuously 
and independently moving across each other. 

In the first of this set of three studies, we performed psycho- 
physical experiments for determining the conditions under which 
transparent motion perception occurs (see preceding companion 
article, Qian et al., 1994). We found that displays with locally 
well-balanced motion signals in opposite directions are percep- 
tually nontransparent. The transparent displays, on the other 
hand, contain locally unbalanced motion signals in different 
directions. Furthermore, if the two components of the spatially 
balanced displays are at different depths, or contain very dif- 
ferent spatial frequency contents, the displays appear transpar- 
ent. These displays contain motion signals that are unbalanced 
in binocular disparity or spatial frequency. Based on these re- 
sults, we proposed that local suppression among different di- 
rections of motion within each disparity and spatial frequency 
channel could be the mechanism for distinguishing transparent 
displays from nontransparent ones. Nontransparent displays 
presumably maximize the suppression in all frequency and dis- 
parity channels and therefore evoke relatively weak responses. 

We also investigated motion transparency physiologically 
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Figure 1. The motion energy model used in most of our simulations 
for explaining the perceptual difference of transparent and nontrans- 
parent displays. Motion sensitivity is generated by the spatiotemporally 
oriented filters shown schematically in the square boxes. There are two 
stages in the model. The first stage computes unidirectional motion 
energies by squaring and then summing the outputs of a quadrature pair 
of oriented filters. In the second stage, motion energies from opposite 
directions suppresses each other. Subtractive inhibition is indicated in 
the figure, but we have also considered divisive inhibition (see text). 

through single-unit recordings from Vl and MT (see preceding 
companion article, Qian and Andersen, 1994). We found that 
the directionally selective Vl cells responded quite well to both 
transparent and the nontransparent stimuli. On the average, 
they could not reliably distinguish the two types of displays. On 
the other hand, MT cells’ responses to displays with two com- 
ponents moving in opposite directions are strongly suppressed 
in comparison to their preferred direction responses. More im- 
portantly, the suppression is significantly higher (or the response 
weaker) for the nontransparent stimuli than for the perceptually 
transparent ones. 

Our physiological experiments indicate a two-stage model of 
motion perception with a motion measurement stage in Vl and 
an opponent-direction suppression stage in area MT. Our psy- 
chophysical experiments further suggest that the suppression in 
the second stage should be spatial frequency and disparity spe- 
cific. In this article, we present analysis and computer simula- 
tions using such a two-stage model in order to demonstrate more 
quantitatively that a disparity- and spatial frequency-specific 
suppressive mechanism can indeed account for the difference 
in the perceptual transparency of our displays. 

We use motion energy models (Adelson and Bergen, 1985; 
Watson and Ahumada, 1985) and their extension to disparity 
sensitivity (Qian, 1994) for motion measurements in the first 
stage. Many models for biological motion processing have been 
proposed. We choose motion energy models because of their 
biological plausibility. Although certain versions of this class of 
models have been shown to be equivalent to the Reichardt 
motion detectors (Reichardt, 196 1; Adelson and Bergen, 1985; 
van Santen and Sperling, 1985), the unidirectional motion en- 
ergy stage of the model is not equivalent to any stage in the 
Reichardt detector (Emerson et al., 1992). There is physiological 
evidence suggesting that directionally selective cells in the pri- 
mary visual cortex behave as if they compute unidirectional 
motion energies (Reid et al., 1987; McLean and Palmer, 1989; 
Snowden et al., 1991; Emerson et al., 1992). For the second, 
suppression stage of the model, we consider both subtractive 
(Adelson and Bergen, 1985) and divisive (Snowden et al., 199 1; 
Heeger, 1992) types of inhibition among different directions of 
motion. 

We first apply the model to those displays without disparity 
cues. The spatial frequency effect can be explained by the energy 
models since energy detectors naturally contain frequency se- 
lectivity. We then consider the effect of binocular disparity. 
Since standard energy models do not contain disparity tuning, 
we have recently developed a model for biological stereopsis 
and combined it with motion energy models into a common 
framework (Qian, 1994). We show here through computer sim- 
ulations that the extended model can account for the contri- 
bution of disparity to motion transparency. 

Preliminary versions of the results presented here have ap- 
peared previously (Qian et al., 1991, 1992). 

Analysis and Simulations 
We used the version of the energy models proposed by Adelson 
and Bergen (1985) in our analysis and simulations. An essential 
idea behind the model is that motion of an object through space 
over time can be described by an orientation in the spatiotem- 
poral space (Fahle and Poggio, 198 1; Adelson and Bergen, 1985). 
The model uses spatiotemporally oriented linear filters to detect 
motion. The linear mechanism for generating motion sensitivity 
is supported by recent intracellular studies of directionally se- 
lective cells in cat visual cortex (Jagadeesh et al., 1993). The 
outputs of two linear filters with 90” phase difference are squared 
and then summed to form the phase-independent unidirectional 
motion energy detector. Such a detector simply measures the 
Fourier power within a certain spatiotemporal frequency win- 
dow specified by its parameters. 

We will examine whether our psychophysical and physiolog- 
ical results can be explained by assuming a suppressive stage in 
the motion pathway at which motion signals in different direc- 
tions from each small region inhibit each other. Different sup- 
pression mechanisms have been proposed in the past. They 
include subtractive opponency (Adelson and Bergen, 1985) and 
divisive normalization (Adelson and Bergen, 1986; Snowden et 
al., 199 1; Heeger, 1992). While there are important differences 
between these two mechanisms (see Divisive inhibition, below), 
our psychophysical experiments are not designed to differentiate 
between them. In fact, both mechanism can explain our results 
well. A schematic drawing of the motion energy model with 
subtractive inhibition is shown in Figure 1. 

We now give an explicit description of our model for motion 
transparency. We assume that for each spatial location there is 
a population of motion energy detectors tuned to different ranges 
of spatiotemporal frequency (and thus to different directions 
and speeds of motion) and disparity. To the first approximation, 
this stage can be identified with Vl cells. At the second (sup- 
pressive) stage either the opponent energy (with subtractive in- 
hibition) or the normalized energy (with divisive inhibition) is 
computed within each spatial frequency and disparity channel 
from the initial motion energy measurements. We propose that 
this second stage is performed by subunits in MT cells’ receptive 
fields. We hypothesize that if a visual display generates large 
energies for both left and right directions at the suppression 
stage and if these energies in different directions are spatially 
mixed, the pattern is perceptually transparent. Note that for 
patterns with a richer spectrum of frequencies, more unidirec- 
tional energy detectors will be activated. Other things being 
equal, these patterns will activate more opponent or normalized 
energy detectors and will therefore be more likely to appear 
transparent. This is consistent with our psychophysical obser- 
vation that random dot patterns look transparent over a wider 
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range of parameters than randomly spaced parallel line patterns 
and that counterphase gratings and square wave gratings look 
nontransparent over a wider range of parameters than equally 
spaced line patterns (Qian et al., 1994). 

In the above description, we assume that motion suppression 
occurs at the subunit level of MT cells. For completeness we 
further propose that all subunits of an MT cell have similar 
tuning properties and that the overall response of an MT cell is 
equal to the summation of the thresholded output of all its 
subunits. This step could be viewed as a part of the spatial 
integration process that may be responsible for the coherent 
percept of transparent motion (see Discussion), and will be ex- 
plored in our future publications. For our present purpose of 
explaining the perceptual differences of our psychophysical 
stimuli, the activity at the MT subunit level is sufficient. 

For simplicity, we first consider the case of one spatial di- 
mension and no disparity, and use subtractive inhibition for 
suppression. We use Gabor filters for spatiotemporal orientation 
detection. These filters correspond to Vl simple cell. A quad- 
rature pair of such filters with even and odd phases tuned to 
leftward (-) and rightward (+) directions of motion are given by 

where a, and (r, determine the widths of the filters in the spatial 
and temporal domain, respectively, and w, and o, are the central 
angular spatial and temporal frequencies. The ratio of the latter 
two parameters determines the orientation of the filters in the 
spatiotemporal space. All these variables are assumed to be 
positive. Also note that the areas under the Gaussian envelopes 
of the filters are normalized. This is important for comparing 
results from filters of different scales. The responses of these 
filters to visual stimuli are given by the convolution operation. 

The phase-insensitive leftward and rightward motion energies 
for a spatiotemporal pattern fix, t) are defined as 

E+(x, t) = V*ge+l* + [fig:12, (3) 

E-(x, t) = L/--g,-I’ + [f*g,-12, (4) 

where l denotes convolution. Responses at this stage correspond 
to directionally selective complex cells. The opponent motion 
energy is defined as the difference of the two: 

E(x, t) = E+(x, t) - E-(x, t) (5) 

Under these definitions, positive (negative) opponent energy 
indicates the rightward (leftward) motion and a value around 
zero means that no motion is detected. Of course, neurons can 
only fire positively. In reality, the leftward and rightward op- 
ponent motion energies have to be carried by two different 
populations of MT cells with subunits having threshold nonlin- 
earity. It is obvious that the introduction of opponency will 
cause substantial cancellation of motion energies from opposite 
directions. What we are interested in here, however, is whether 
the residual responses after the cancellation would indeed be 
quite different for our transparent and nontransparent patterns. 
We now make some explicit calculations and computer simu- 
lations for some of these patterns. 

Counterphase gratings 

We start with counterphase gratings, which are composed of 
two identical sine wave gratings moving across each other in 
opposite directions. Counterphase gratings are perceptually non- 
transparent. They can be represented mathematically as 

j&x, t) = sin@> - f&t) + sin&$ + C&t), (6) 

where Q2, and f B, are the spatial and temporal frequencies. 
Assume that both 9, and Q2, are positive, then the two terms on 
the right-hand side of Equation 6 represents two identical sine 
wave gratings moving to the right and left, respectively. As is 
shown in the Appendix, the opponent energy for the counter- 
phase grating is exactly 

E,,(x, 0 = 0, (7) 

for all (x, t) (i.e., for filters located at any position at any time), 
independent of the parameters for the Gabor filters and the 
grating. This result explains the lack of transparent motion per- 
ception for counterphase gratings. Note that while it is intuitive- 
ly obvious that opponent energy should be small for the coun- 
terphase gratings, the exact null result in Equation 7 is a 
consequence of using quadrature Gabor filters and subtractive 
inhibition. 

Spatial frequency specijicity 

While two identical sine wave gratings moving across each other 
look like flicker, two sine gratings with very different spatial 
frequencies are perceptually transparent (Qian et al., 1994). This 
suggests that the suppression between different directions of 
motion is limited within each spatial frequency channel. The 
motion detectors in energy models already have frequency se- 
lectivity built into it. From the Fourier transformation of the 
Gabor filters in Equations 1 and 2, it can be shown that the 
frequency responses of these filters are centered around (+w,, 
*wJ, with the bandwidth (defined at half peak amplitude) along 
each dimension equal to 

bw = log, (8) 

where w and u represent the central angular frequency and 
Gaussian width of the given dimension and In stands for natural 
logarithm. To model frequency specificity of directional sup- 
pression, we therefore apply opponency only to the two unidi- 
rectional motion energies computed with filters of identical fre- 
quency selectivity but tuned to opposite directions of motion. 

We performed computer simulations on a display composed 
of two different sine wave gratings with spatial frequencies equal 
to 1.5 cycles/degree and 6 cycles/degree, respectively. We also 
considered a counterphase grating with spatial frequency equal 
to 3 cycles/degree for comparison. We used three sets of filters 
with spatial frequencies centered around 1.5, 3, and 6 cycles/ 
degree. They represent three spatial frequency channels. The 
Gaussian widths (us) of the filters were ‘13, ‘4, and ‘& of a degree, 
respectively (the actual widths of the filters, defined at the half- 
amplitude of the Gaussian envelope, are 0.78”, 0.39”, and 0.20”, 
respectively). Under these parameters, the bandwidths of all 
filters are 1.14 octaves according to Equation 8. The results of 
our simulations are shown in Figure 2. The spatiotemporal rep- 
resentations of the display composed of two different sine wave 
gratings and that of the counterphase grating are shown in Figure 
2, a and b. Figures 2c-h represents the opponent energies from 
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equal, however, the resulting equally spaced line patterns are 
nontransparent. 

Two sets of N parallel lines with initial positions x,+ and x; 
(n= 1,2,. . ., N), respectively, moving in the opposite directions 
with speed v, can be represented by 

fL(x, 0 = c 2 [6(x - x,’ -vt) + 6(x - x,- + vt)], (9) 
n=, 

where S() is the Dirac function and c is a constant with the 
dimension of the inverse of length. Assuming that v is positive, 
the two terms in the square bracket on the right-hand side rep- 
resent lines moving to the right and left, respectively. It can be 
shown (see Appendix) that under appropriate assumptions, the 
opponent energy for such a line pattern is given by 

_ exp 

1 

_ (x - x,- + vt)’ + (x - x, + vt)” 

2(v%: + a:) 1 (h) 
Figure 2. Simulation for a counterphase grating and two sine wave 
gratings with different spatial frequencies. All figures are shown in spa- 
tiotemporal space. a and b are the spatiotemporal representations of 
the two types of patterns. c-h show the opponent energies in three 
different frequency channels for the two patterns, all shown with the 
same gray scale. Gray indicates little motion energy and white and black 
code for rightward and leftward opponent energies, respectively. See 
text for the details of the parameters used. 

the three frequency channels for the two types of displays. In 
this figure gray indicates little motion energy, and white and 
black code for rightward and leftward opponent energies, re- 
spectively. It is clear from Figure 2c-h that while the counter- 
phase grating gives no opponent motion energy in any of the 
three channels, the display composed of two different sine wave 
gratings generates rightward opponent motion energy in the high- 
frequency channel and leftward energy in the low-frequency 
channel. These results correlate well with the observation that 
the former is not perceptually transparent while the latter is. If 
the inhibition were between the low- and high-frequency chan- 
nels, the motion energies in opposite directions would strongly 
cancel each other, and the pattern would appear nontransparent, 
just like counterphase gratings. 

Line patterns 

y1 # m. For randomly spaced line patterns the second sum- 
mation is much smaller in magnitude than the first for the 
additional reason that the cosine terms are equally likely to be 
positive or negative. We therefore only need to consider the 
contribution of the first summation. The first term in the sum- 
mation will generate a large positive contribution to the op- 
ponent energy around those positions in the x-t plane such that 
x - x,+ - vt is close to 0, that is, around the trajectory of each 
right-going line in the spatiotemporal space. Similarly, the sec- 
ond term in the first summation will have a large negative con- 
tribution to the opponent energy when x - x: + vt is very 
small in magnitude. These two terms will not sufficiently cancel 
each other due to the random location of the lines. There will 
be both large positive and large negative opponent energies 
across the pattern at any instance of time, indicating both the 
rightward and leftward motion (the presence of transparent mo- 
tion). 

For equally spaced line patterns we have 

x; - x,+ = xi - x; = (m - n)Ax, (11) 

where Ax is the spacing between two adjacent lines, so the two 
cosine terms in the second summation of Equation 10 are equal. 
At periodic time intervals, each line in one set is spatially very 
close to one, and only one, line in the other set and the two 
corresponding terms in both summations of Equation 10 will 

We next turn to the line patterns. Our psychophysical experi- strongly cancel each other. This periodic loss of motion signal 
ments indicate that over a wide range of parameters, displays helps to explain the oscillatory perception for these patterns. 
composed of two sets of randomly spaced parallel lines moving The above argument is based on the assumption that filters 
across each other in opposite directions are perceptually trans- of reasonable sizes (a, and a,) are used. The difference between 
parent. Ifthe spacings between every two adjacent lines are made the opponent energy of an equally spaced line pattern and that 
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of the corresponding randomly spaced line pattern certainly 
depends on the choice of a, and a,. We consider here two extreme 
cases. First, let uX + co and u1 --+ co, that is, use extremely wide 
filters. It is clear from Equation 10 that the opponent energy E, 
- 0 no matter whether the lines are equally spaced or randomly 
spaced, indicating that both types of patterns should appear 
nontransparent. This agrees with our informal observation that 
a pattern always become less transparent or nontransparent when 
it is viewed with more eccentric part of retina, where the filter 
sizes are presumably larger. We next consider the case when the 
filters are extremely narrow, that is, a, ---, 0 and a, - 0. Under 
this condition, Equation 10 reduces to 

E,(x,t)=&(x-x,t-vt)-6(x-x;+vt)]. (12) 

We basically recover the original line patterns with one set of 
lines contributing positive opponent energy, and the other neg- 
ative energy. Thus, there are motion signals in both directions 
even for the equally spaced line patterns, except at the moment 
when the two opposite-going components are about to super- 
impose. At that time, x,+ - vt = x; + vt for all n, and the 
opponent energy in Equation 12 is 0. This corresponds closely 
to what we observed for the equally spaced line patterns when 
the number of lines was small and therefore the spacing between 
lines was large (increasing the spacing between lines is mathe- 
matically equivalent to reducing a, and a,). Physiologically, the 
motion sensitive filters are not arbitrarily large or small. As a 
result, we see randomly spaced line patterns as much more 
transparent than the corresponding equally spaced line patterns 
over a range of parameters. 

We did computer simulations with randomly spaced and 
equally spaced parallel line patterns. In Figure 3, a and b are 
the spatiotemporal representations of two such line patterns. 
Each figure represents 5” in the spatial dimension and 2.5 set 
in the temporal dimension, respectively. The speed of all the 
lines is 2Vsec. Since each line is wrapped around when it moves 
out of the spatial window, there are 15 lines moving in each of 
the two opposite directions at any instance of time for both line 
patterns. With these parameters the randomly spaced line pat- 
tern is perceptually transparent while the equally spaced line 
pattern is not, according to our psychophysical observations. 
We used the same three sets of Gabor filters as in Figure 2. They 
represent low-, medium-, and high-frequency channels, or 
equivalently, wide, medium, and narrow spatial scales. The cen- 
tral spatial and temporal frequencies of the medium channel are 
equal to the fundamental spatial and temporal frequencies of 
the equally spaced line patterns. The opponent energies from 
the three channels for the two line patterns are shown in Figure 
3c-h. Again, in this figure gray indicates little motion energy 
and white and black code for rightward and leftward opponent 
energies, respectively. It is clear that the opponent energy for 
the randomly spaced line pattern contains both rightward and 
leftward motion signals while that for the equally spaced line 
patterns is much weaker. This corresponds well with the pres- 
ence and absence of perceptual motion transparency in the two 
displays. Also, the way opponent motion energies change across 
the three scales of the filters follows what we predicted based 
on Equation 10: as the filters get wider, the opponent energies 
become weaker. Likewise, as the filters get narrower, the dif- 
ference between the two types of patterns becomes smaller, and 
the equally spaced line patterns produce some opponent energy. 

Stimuli 

Medium 
frequency 
channel 

Figure 3. 

Randomly spaced 
line pattern 

Equally spaced 
line pattern 

(4 (b) 

t t 

Cd) 

Cd 
t 

(h) 

Simulation for an equally spaced and the corresponding . . randomly spaced parallel line patterns. All figures are shown in spano- 
temporal space. a and b are the spatiotemporal representations of the 
two patterns. The total number of black pixels is exactly the same in 
these two patterns. c-h show the opponent energies in three different 
frequency channels for the two patterns, all shown with the same gray 
scale. Gray indicates little motion energy and white and black code for 
rig&ward and leftward opponent energies, respectively. See text for the 
details of the parameters used. 

This corresponds well with the perception that as the number 
of lines in an equally spaced line patterns decreases, the patterns 
become a little more transparent. 

Dot patterns 

We now consider the paired and the unpaired dot patterns, 
which are perceptual nontransparent and transparent, respec- 
tively. Since these dot patterns have contrast variations along 
the y-dimension as well as along the x- and t-dimensions, we 
need three-dimensional Gabor filters for computing their op- 
ponent energies. As is shown in the Appendix, the results of 
analysis are rather similar to those for the line patterns described 
in the previous section. The introduction of the y-dimension 
simply adds an amplitude term and a phase term to the response 
for each dot. There is an additional amplitude term due to the 
limited lifetime of the dots. The presence and absence of motion 
transparency in paired and unpaired dot patterns could be ex- 
plained in a similar way as for the line patterns. For the paired 
dot patterns with two dots in each pair having different signs of 
contrast (one black, the other white), the results are similar 
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Figure 4. Simulation for a paired and the corresponding unpaired dot 
patterns. The two columns show the results for the unpaired and the 
paired dot patterns, respectively. The three rows represent the spatial 
distribution of the opponent energies for the two types of patterns at 
three successive time frames. All figures are displayed with the same 
gray scale. Gray indicates little motion energy and white and black code 
for rightward and leftward opponent energies, respectively. See text for 
the details of the parameters used. 

because the unidirectional energies do not depend on the signs 
of contrast due to the squaring nonlinearity. For paired dot 
patterns with large vertical offsets, the two dots in each pair will 
generate quite different motion energies in opposite directions 
due to the y-dependent amplitude term. Their contributions will 
not cancel well locally and the patterns will thus appear trans- 
parent. 

We have carried out computer simulations for the paired and 
the unpaired dot patterns. An example is shown in Figure 4. 
The simulation was done with a set of filters with central fre- 
quency equal to 2.23 cycles/degree, and Gaussian width 0.1“. 
Note that in Figure 4 the two axes of each figure represent two 
spatial dimensions, instead of one spatial and one temporal 
dimension as in Figures 2 and 3. The temporal dimension in 
Figure 4 is represented by showing three successive time frames 
in three rows. It is clear from the figure that the unpaired dot 
pattern contains much stronger leftward and rightward oppo- 
nent motion energies than the paired dot patterns, in agreement 
with our perception. 

It is important to note that the Fourier power spectra of the 
paired and the unpaired dot patterns are rather similar. This 
indicates that the perceptual difference of the two types of pat- 
terns is unlikely to be explained by the motion energy mea- 
surements alone without the introduction of the suppression 
stage. We have carried out the Fourier transformation on the 
paired and the unpaired dot patterns. For simplicity, we con- 
sidered dots moving in the x-dimension and ignored. the y-di- 

Figure 5. Fourier transforms of a paired and an unpaired dot patterns. 
a and bare the spatiotemporal representations of an unpaired dot pattern 
and its corresponding paired dot pattern. The y-dimension is not shown. 
c and dare the amplitudes of the Fourier transforms of the two patterns 
displayed with the same gray scales. The zero spatiotemporal frequency 
points are located at the centers of the diagrams. 

mension of the patterns. In Figure 5, a and b, show the spatio- 
temporal representations of a paired dot pattern and its corre- 
sponding unpaired dot pattern. The amplitudes of the Fourier 
transforms of the two patterns are shown in Figure 5, c and d. 
The points with zero spatial and temporal frequencies are lo- 
cated at the centers of both diagrams. It is clear from these 
figures that both patterns have their main Fourier power con- 
centrated along the two diagonal lines going through the origin. 
These two lines are generated by the dots moving in the two 
opposite directions of motion (Watson and Ahumada, 198 5). If 
one tries to detect motion by doing something equivalent to 
fitting lines (through origin) to these two spectra (Heeger, 1988; 
Shizawa and Mase, 1990), then the paired and the unpaired dot 
patterns will both be considered transparent by such a proce- 
dure. Since perceptually the unpaired dot patterns are much 
more transparent than the paired ones, we conclude that the 
suppression stage is essential for determining the perceptual 
transparency of a display. 

Disparity specijicity 

We showed that the paired dot patterns can be made percep- 
tually transparent if a certain amount of binocular disparity is 
introduced between the dots in each pair (Qian et al., 1994). To 
model this interaction between motion and stereo vision, we 
need to incorporate disparity sensitivity into the motion energy 
model. We have recently developed a model of stereo vision 
based on known properties of binocular cells in the visual cortex 
and have shown that this model can be naturally combined with 
motion energy models (Qian, 1994). Here we show through 
computer simulations how the combined model can be used to 
explain the effect of disparity on perceptual motion transpar- 
ency. Our model assumes that the left and right receptive fields 
of a binocular cell are given by 
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Figure 6. Simulation for a paired dot pattern with one set of dots 
moving in one direction with positive disparity, and the other set of 
dots in the opposite direction with negative disparity. The three rows 
show the spatial distribution of the opponent energies for the pattern 
at three successive time frames. The three columns correspond to the 
opponent energies in three disparity channels. All figures are displayed 
with the same gray scale. Gray indicates little motion energy and white 
and black code for rightward and leftward opponent energies, respec- 
tively. See text for the details of the parameters used. 

.fXx, Y, t) = exp 
( 
- 

X2 

2u; 
y2- t2 
24 I 2a2 ) 

. c0s(w,x + wyy + w,t + $3, (13) 

f,(x,xt)=exp -5-g-G ( * Y ) 
. cos(w,x + wyy + w,t + qq, (14) 

where CT and w are the widths of the Gaussians and angular 
frequencies along the spatial and temporal dimensions, and 4, 
and cp, are the phase parameters. For a stimulus with a constant 
disparity D and moving at speed v, and vY along the horizontal 
and vertical directions, it can be shown that the energy computed 
with a quadrature pair of such filters is approximately 

E = 4pTP(w, + w,v, + o,v,,)cos2 (15) 

where SO is the delta function, and p is the amplitude of the 
Fourier transformation of the stimulus (Qian, 1994). Equation 
15 indicates that the cell is indeed sensitive to both motion and 
stereo disparity, similar to some real cortical cells. While w,, w,,, 
and w, determine the motion selectivity, (4, - 4,) determines 
the disparity sensitivity. The width of disparity tuning (defined 
at the half peak amplitude) is equal to 

AD=?F. 
WX 

(16) 

Unpaired 
dot pattern 

Paired dot 
pattern 

Flicker 
pattern 

(4 0)) (cl 

Y Y Y 

X X X 

Figure 7. Opponent energies for the same paired and the unpaired dot 
patterns in Figure 4, and the corresponding flicker pattern. Only one 
time frame for each spatial energy distribution is shown. All figures are 
displayed with the same gray scale. Gray indicates little motion energy 
and white and black code for rightward and leftward opponent energies, 
respectively. See text for the details of the parameters used. 

We can thus explain the effect of both frequency and disparity 
cues in our psychophysical experiments by restricting opponen- 
cy to unidirectional energies computed with filters with identical 
wx, wy, w,, and (4, - $J,), but tuned to opposite directions of 
motion. 

We carried out a simulation on a paired dot pattern with one 
set of dots moving in one direction with disparity 0.1 l”, and 
the other set of dots in the opposite direction with disparity 
-0.11”. The results are shown in Figure 6. Again, the three rows 
here represent three successive time frames. The three columns 
represent the opponent energies computed with three sets of 
filters with their (4, - 4,) equal to -7r/2,0, and u/2, respectively. 
The central spatial frequency in horizontal dimension, (wJ27r), 
was equal to 2.23 cycles/degree (or the angular frequency w, 
equal to 14.0 radians/degree). With this choice of w,, the three 
sets of filters have their peak disparity tuning around 0.1 l”, 0”, 
and -0.1 l”, respectively, and the widths of tuning are 0.22”. 
We see from Figure 6 that the leftward and rightward opponent 
motion energies are now segregated into different disparity chan- 
nels. Unlike the paired dot pattern without disparity shown in 
Figure 4, b, d, and f; these energies do not cancel each other 
out. This accounts for the perceptual transparency ofthe pattern. 

Flicker responses 
Since nontransparent patterns such as counterphase gratings and 
paired dot patterns look rather like flicker, we also generated a 
flicker pattern for comparison. The pattern was derived from 
the unpaired dot pattern in Figure 4 by setting the dot speed to 
zero. Other parameters including dot lifetime are the same. The 
computed opponent motion energy of the flicker pattern, to- 
gether with the opponent enerees for the paired and the un- 
paired dot patterns from Figure 4, are shown in Figure 7a-c. 
The opponent motion energy of the paired dot pattern is only 
slightly stronger than that of the flicker pattern, and both are 
significantly weaker than the opponent energy of the unpaired 
dot pattern. These simulations conform to our finding that MT 
cells’ responses to the paired dot patterns and to the flicker noise 
are not significantly different from each other, and that both 
responses are significantly weaker than the response to the un- 
paired dot patterns (Qian et al., 1994). 

Divisive inhibition 
We have shown above that simple subtractive inhibition fol- 
lowing motion energy computation can account for our psy- 
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chophysical and physiological results on transparent and non- 
transparent patterns. Single-unit recordings from behaving 
monkeys, on the other hand, indicate that the directional in- 
hibition in area MT has a divisive component (Snowdcn et al., 
199 1). Heeger (1992) also demonstrated that divisive normal- 
ization can account for a large amount of psychophysical and 
physiological results, some of which are inconsistent with pure 
subtractive inhibition. For example, the opponent energy com- 
puted with subtractive inhibition is always proportional to the 
square of stimulus contrast while real visual cells exhibit con- 
trast saturation. It is therefore important to demonstrate that 
our psychophysical and physiological experiments can also be 
explained by divisive suppression. 

We have repeated all our simulations described above using 
divisive suppression and similar results (not shown) have been 
obtained. We considered two different normalization schemes. 
The first one normalizes the opponent energy by the static energy 
(Adelson and Bergen, 1986): 

NE(x, t) = 
E+(x, t) - E-(x, t) 

E”(x, t) + t ’ (17) 

where E+(x, t) and E-(x, t) are the left and the right motion 
energies, respectively, E”(x, t) is the static energy, and c is a 
small number for stabilizing the division. This approach is close- 
ly related to the least-squares method (Lucas and Kanade, 198 1) 
and gradient method (Horn and Schunck, 1981) for velocity 
estimation (Adelson and Bergen, 1986; Simoncelli, 1993). It is 
not surprising that Equation 17 can also explain the perceptual 
difference between the transparent and the nontransparent pat- 
terns since it is proportional to the opponent energy. 

The second approach normalizes the output of each unidi- 
rectional energy detector by the sum of the outputs of all de- 
tectors tuned to the same spatial frequency range. For displays 
containing only opposite directions of motion, the normalized 
left and right motion energies within a given frequency band 
are 

NE&(x, t) = 
E’(x, t) 

E+(x, t) + E-(x, t) + c’ (18) 

where c represents contributions from filters tuned to directions 
other than left and right. This approach is modified from Heeger 
(1992), who used the total output of detectors tuned to all fre- 
quency ranges as the normalization factor. We restricted nor- 
malization to be within each frequency channel because our 
psychophysical experiments suggest that the suppression is spa- 
tial frequency specific (Qian et al., 1994). For the convenience 
of the description we let c be equal to zero. For the nontrans- 
parent patterns with locally well-balanced motion signals, E+(x, 
t) is approximately equal to E-(X, t) in Equation 18 so that the 
normalized motion energies are very close to 0.5. For the un- 
balanced patterns that are perceptually transparent, on the other 
hand, there are many locations at which E+(x, t) is much larger 
than E-(x, t) or vice versa. The normalized left or right motion 
energies at these locations will be close to 1.0. This twofold 
difference in normalized energies between the balanced and the 
unbalanced patterns could account for the difference in their 
perceptual transparency. Notice that this difference cannot be 
reduced or reversed by changing the contrast of the patterns 
because the normalized energy is independent of contrast. Also 
note that the normalized energies of nontransparent patterns 
are similar to those of flicker patterns. The latter are also close 

to 0.5 since flicker patterns contain equal amounts of left and 
right motion cncrgy. 

Discussion 

We have shown in this article that a motion energy computation 
followed by disparity- and spatial frequency-specific suppres- 
sion among different directions of motion can indeed explain 
the perceptual difference of the transparent and nontransparent 
displays used in our psychophysical experiments. Specifically, 
we found that the nontransparent displays generate relatively 
weak opponent or normalized energies at the suppression stage. 
In fact, these energies are not higher than those generated by 
flicker patterns. On the other hand, the perceptually transparent 
displays generate much stronger opponent or normalized mo- 
tion energies along more than one direction of motion. These 
energies in different directions are located either in different but 
mixed small areas (as in the randomly spaced line pattern and 
the unpaired dot pattern), or in different disparity or spatial 
frequency channels over the same spatial regions (as in the dis- 
play made of two different sine wave gratings, and in the paired 
dot pattern with binocular disparity). We hypothesize that a 
later stage could integrate these energies in different directions 
separately to form two overlapping transparent surfaces. Note 
that a pattern moving in a single direction will not appear trans- 
parent because it will only generate strong opponent or nor- 
malized motion energies in one direction. A display containing 
two widely separated objects moving in opposite directions will 
not appear transparent either. Although such a display will gen- 
erate strong opponent or normalized motion energies in two 
different directions, these energies are not spatially mixed and 
therefore cannot be integrated into two overlapping surfaces. 

Previous physiological experiments indicate that MT cells 
show strong suppression among different directions of motion 
(Snowden et al., 199 1). MT could therefore be the physiological 
equivalent of the suppression stage in our simulation, where 
transparent and nontransparent displays can be distinguished. 
In fact, our physiological recordings in a preceding companion 
article demonstrate that average MT activity to the transparent 
unpaired dot patterns is significantly higher than that to the 
nontransparent paired dot patterns (Qian and Andersen, 1994). 
In addition, our psychophysical experiments with the paired 
and the unpaired dot patterns indicate that under the foveation 
condition, an alignment of opposing motion signals on the scale 
of 0.4” can generate large difference in perceptual transparency. 
We therefore propose that the suppression stage for differenti- 
ating transparent and nontransparent occurs at the subunit level 
of MT receptive fields. Vl cells, on the other hand, show rel- 
atively weak suppression among different directions of motion 
(Snowden et al., 199 1; Qian and Andersen, 1994). Many ofthem 
behave rather like unidirectional motion energy detectors. They 
respond quite well to both transparent and nontransparent pat- 
terns, and the average V 1 activity could not reliably tell the two 
types of patterns apart (Qian and Andersen, 1994). V 1 and MT 
therefore approximately correspond to the energy computation 
and suppression stages in our simulations. 

We used Gabor filters along both spatial and temporal di- 
mensions for motion detection in our simulations. While the 
spatial receptive field structures of simple cells are known to be 
described by Gabor functions well (Jones and Palmer, 1987), it 
is not physiologically plausible to use Gabor functions for the 
temporal responses. Temporal Gabor filters are nonzero on the 
negative time axis. They are thus noncausal. This is, however, 
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not a major problem because these filters decay to zero expo- 
nentially due to the Gaussian envelopes. We could practically 
make the filters causal by shifting them toward the positive time 
direction by 3a,. Such a shift will only generate a phase term 
and will not affect energy measures. A more serious problem 
with using temporal Gabor filters is that the temporal response 
of real simple cells is skewed, with its envelope having a longer 
decay time than rise time. Also, zero-crossing intervals in the 
temporal dimension are not equally spaced (DeAngelis, et al., 
1993). In order to make our model more biologically relevant, 
we have repeated our simulations using more realistic temporal 
response functions given in Equation 1 of Adelson and Bergen 
(1985) and obtained the similar results. We believe that our 
results do not depend on the details of the receptive field shapes 
of the energy detectors as long as they approximately measure 
the local Fourier power within a certain spatiotemporal fre- 
quency window specified by their parameters. 

The suppression among different directions of motion used 
in our simulation makes it impossible for a stimulus to generate 
strong responses along more than one direction of motion in 
each small spatial area at the opponent stage when there are no 
other cues in the stimulus, such as disparity or spatial frequency 
(the weak opponent energies for the paired dot pattern in Fig. 
4b,d,f give an example). The size of the small area is determined 
by the size of the front-end filters. In this regard, the suppression 
stage is rather like the pooling or regularization step commonly 
used in machine vision systems (Horn and Schunck, 198 1; Hil- 
dreth, 1984; Heeger, 1987; Wang et al., 1989; Grzywacz and 
Yuille, 1990). Such a step is required to solve the aperture 
problem and to average out noise while at the same time it 
prevents those models from having more than one velocity 
estimation over each area covered by the pooling operator. In 
this connection, it is interesting to note that some versions of 
the pooling procedures for combining local gradient constraints 
(Horn and Schunck, 198 1; Lucas and Kanade, 198 1) are equiv- 
alent to a mixture of subtractive and divisive types of suppres- 
sion (Simoncelli, 1993). The agreement between our simulations 
and the psychophysical observations implies that machine vi- 
sion systems can be made more consistent with transparent 
motion perception if the pooling operation in these systems is 
restricted to small areas and to each frequency and disparity 
channel. We suggest that the difficulty most machine vision 
systems have with motion transparency can be partly attributed 
to the fact that these systems typically apply pooling operations 
over a relatively large region and that they usually do not explore 
other cues such as disparity and spatial frequency to restrict the 
scope of pooling. 

The displays we used in our psychophysical and physiological 
experiments and computer simulations are highly artificial and 
are unlikely to be found in the natural environment. What, then, 
is the advantage of having a suppression stage, such as MT, in 
the motion pathway if it is not just for making counterphase 
gratings or paired dot patterns appear nontransparent? In fact, 
if a subpopulation of VI cells act like unidirectional motion 
energy detectors, why doesn’t the brain use a family of these 
cells tuned to different directions of motion to represent the 
perception of multiple motions? Why instead should perception 
be derived from the suppression stage in MT, which reduces 
the system’s acuity to transparent motion (Snowden, 1989) and 
at the same time makes the well-balanced patterns appear non- 
transparent? The identification of the suppression stage with the 
pooling operation in machine vision systems discussed above 

provides an answer. Since the function of the pooling operation 
is to solve the aperture problem and to average out noise, we 
suggest that directional suppression has similar functions. In- 
deed, unidirectional energy detectors like VI cells suffer the 
aperture problem; that is, they seem to respond only to the 
component of the motion that is perpendicular to the local 
spatial orientations of the stimulus contrast. Also, VI cells are 
very responsive to dynamic noise patterns made of flickering 
dots (Qian and Andersen, 1994). The suppression stage in the 
motion pathway could help to solve these problems, just as the 
pooling operations do in machine vision systems. In fact, we 
found that the noise response of MT cells is much lower than 
that of Vl cells (Qian and Andersen, 1994). There is also evi- 
dence that the human visual system may solve the aperture 
problem by averaging local motion measurements (Ferrera and 
Wilson, 1990, 1991; Yo and Wilson, 1992; Rubin and Hoch- 
stein, 1993). Suppression among different directions of motion 
could be viewed as a kind of averaging operation and thus could 
be used to solve the aperture problem. A negative effect of the 
suppression is the reduced acuity for transparent motion. This 
problem is minimized, however, by applying suppression locally 
and by restricting it within each disparity and spatial frequency 
channel, since multiple motions in the real world are usually 
not precisely balanced in each local area and different objects 
tend to have different disparity and spatial frequency distribu- 
tions, While the inhibition among the cells within each disparity 
and spatial frequency channel could help to combine V 1 outputs 
into a single motion signal at each location in order to solve the 
aperture problem and to reduce noise, different disparity and 
spatial frequency channels could represent multiple motions at 
the same spatial location. 

It also seems reasonable to assume that at each spatial location 
of the visual field, cells at the suppression stage that are tuned 
to the same direction of motion, but different spatiotemporal 
frequency bands, should facilitate each other. These cells all 
carry consistent motion signals from different frequency ranges 
at the same spatial location and these signals are likely generated 
by the same moving object. 

The model we have proposed for motion transparency is in- 
complete in several ways. One problem is that while we perceive 
each transparent surface as a coherent whole the output of the 
model at the suppression stage contains many isolated patches 
(see Figs. 4,6). This problem can be solved with the introduction 
of spatial integration. We can assume that cells tuned to similar 
directions of motion at nearby spatial locations have excitatory 
connections between them. When enough of the spatially mixed 
cells tuned to a given direction are active, the activity will spread 
across the whole layer of cells tuned to the same direction of 
motion. Transparency will then correspond to a multipeaked 
distribution of the direction of motion at all spatial locations. 
Spatial summation could also occur within individual MT cells 
through facilitation between subunits in a cell’s receptive field. 
Another issue we have not addressed is whether explicit speed 
estimation has an important role in motion transparency. In 
fact, the outputs of our model are motion energies in different 
frequency and disparity channels instead of explicit velocity 
estimations. In grouping together elements to form surfaces, 
does the visual system consider the magnitudes of the velocity 
vectors of these elements, or just their directions? To explore 
this question we used transparent random dot patterns and as- 
signed the speeds of the dots composing each surface according 
to a uniform probability distribution. We found that when the 
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width of the distribution was as large as half of the average speed 
of the dots, motion transparency could still be observed without 
much difficulty. This suggests that transparent motion percep- 
tion does not rcquirc prccisc knowlcdgc of the rclativc speed of 
the individual dots. This observation is consistent with a recent 
result by Watamaniuk and Duchon (1992), who found that hu- 
man visual system tends to average speed information. 

We can now sketch a more complete model for biological 
motion detection based on the above discussions. At each spatial 
location there is a population of unidirectional motion energy 
detection cells tuned to different disparity and different three- 
dimensional spatiotemporal frequency bands. Each cell receives 
input from the moving pattern in its receptive field according 
to the amount of Fourier power of the pattern falling on its 
disparity and frequency window. At this stage families of Vl 
cells tuned to different directions of motion may be activated, 
but this could be caused by the aperture problem of a single 
moving object, by noise in the environment, or by true trans- 
parent motion of different objects. Further processing has to be 
carried out by connections among the cells. At each spatial 
location the cells with similar disparity and frequency tuning, 
but different direction preferences, are mutually inhibitory while 
those with different frequency tuning but similar directional 
preference are mutually excitatory. This is a generalization of 
the suppression between opposite directions of motion de- 
scribed in this article and it combines raw measurements within 
each disparity and frequency channel at each spatial location 
into a single motion representation (or more accurately a uni- 
modal distribution). The process solves the noise and the ap- 
erture problem and still allows multiple motions to be repre- 
sented in different small areas or among different disparity and 
frequency channels. Finally, the cells at nearby spatial locations 
with similar directional preferences have excitatory connections 
between them to facilitate spatial integration. This process com- 
bines consistent local measurements into coherent surfaces. We 
are currently implementing this more complete model of bio- 
logical motion processing. 

Appendix 
We derive the opponent energy expressions for the counterphase 
gratings, line patterns, and dot patterns in this section. For the 
convenience of subsequent calculations and presentation, we 
introduce the complex Gabor filters, 

gF(x,t)= l -exp -$&&+i(~+x3qt), 
2aaxJT [ 1 (19) 

x : 

whose real and imaginary parts are the even and odd Gabor 
functions in Equations 1 and 2. Since the convolution of any 
real functionflx, t) with the even and odd Gabor filters is equal 
to the real and imaginary parts of the convolution of that func- 
tion with the complex filters, we will only give responses of the 
complex filters for brevity. Using the complex Gabor function, 
the unidirectional and opponent motion energies can be writ- 
ten as 

and 

E+(x, t) = If*s: 

E-(x, 0 = I fig, 

respectively. 

E(x, t) = I fig: 

2 
2 (20) 

2 (21) 

2 - Ifig;12, (22) 

Counterphase grutings 

A single sine wave grating with spatial frequency R, and tem- 
poral frcqucncies 9, and drifting to the right is represented by 

f$(x, t) = sin&x - U,t), cm 

where both Q, and Q, are assumed to be positive. It can be shown 
that the responses of the complex Gabor filters in Equation 19 
to the sine wave grating are given by 

f:*g: = &ox, Tw,)exp[i(&x - f&t)] 

- u(+w,, Tw,)exp[i(-D,x + QJ)]}, (24) 

where u(w,, w,) are defined as 

u(w,, w,) = exp - $(12, + w,)* - z(L2, + w,)* 
[ 1 . (25) 

Note that A+ * g,’ can be obtained from A+ l g; by replacing w, 
with -w,. Since 9,, Q, w,, and w, are all assumed to be positive, 
U(bJX, -a,) is usually much larger than u(w,,--J, u(---w,,wJ, 
and u(w,,w,). It achieves its maximum value when the central 
spatial and temporal frequencies of the filters match those of 
the counterphase grating. It is clear from Equation 24 that the 
rightward motion detector (g:) responds to the right-going sine 
wave much better than the leftward motion detector (g r) does. 

The sine wave grating drifting to the left with the same spatial 
and temporal frequencies as in Equation 23 can be obtained by 
replacing Q2, with -Q, in Equation 23. The responses of the 
complex Gabor filters to this grating can be obtained by the 
same replacement in Equation 24. Using these expressions, the 
opponent energy for the counterphase grating (composed of the 
above two sine wave gratings moving in the opposite directions) 
can then be shown to equal to 0 independent of the parameters 
for the filters and the grating. 

Line patterns 

A single line with initial position x,, and moving to the right 
with speed v can be represented by 

f:(x, t) = cqx - x0 - vt), (26) 

where 6 is the Dirac function and c is a constant with the di- 
mension of the inverse of length. The responses of the complex 
Gabor filters to the line can be shown to be 

. exp 
[ 
- (x - x, - vt)’ + rJ!&JJ, ? w,v)2 

2(v%Jf + a:) 1 
. exp [ i(x - x0 - vt) 

w,u:. It w,u:v 
v%J2 + a2 . 1 x 1 

To simplify subsequent calculations, we assume that 

w, = w,v. (28) 

That is, the spatial and temporal frequencies of the filters are 
such that they are tuned to the speed of the line. Also,J;+ * g; 
is usually much smaller in magnitude than J;+ l g,’ because the 
preferred direction of the filter is opposite to that of the line 
motion. Then, Equation 27 can be simplified to 
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32 can be simplified to 

fd+*g;= c 
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